湖南省邵阳市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
展开
这是一份湖南省邵阳市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共16页。试卷主要包含了﹣1+|﹣2|,﹣2﹣2sin60°,0﹣|﹣2|﹣tan60°,2,其中a=﹣3,b=等内容,欢迎下载使用。
湖南省邵阳市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
一.实数的运算(共3小题)
1.(2023•邵阳)计算:tan45°+()﹣1+|﹣2|.
2.(2022•邵阳)计算:(π﹣2)0+(﹣)﹣2﹣2sin60°.
3.(2021•邵阳)计算:(2021﹣π)0﹣|﹣2|﹣tan60°.
二.整式的混合运算—化简求值(共1小题)
4.(2023•邵阳)先化简,再求值:(a﹣3b)(a+3b)+(a﹣3b)2,其中a=﹣3,b=.
三.分式的化简求值(共2小题)
5.(2022•邵阳)先化简,再从﹣1,0,1,中选择一个合适的x值代入求值.
(+)÷.
6.(2021•邵阳)先化简,再从﹣1,0,1,2,+1中选择一个合适的x的值代入求值.(1﹣)÷.
四.一元一次不等式的应用(共1小题)
7.(2022•邵阳)2022年2月4日至20日冬季奥运会在北京举行.某商店特购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,“冰墩墩”挂件的进价为50元/个.
(1)若购进“冰墩墩”摆件和挂件共花费了11400元,请分别求出购进“冰墩墩”摆件和挂件的数量.
(2)该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2900元,求购进的“冰墩墩”挂件不能超过多少个?
五.正方形的性质(共1小题)
8.(2021•邵阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F是对角线AC上的两点,且AE=CF.连接DE,DF,BE,BF.
(1)证明:△ADE≌△CBF.
(2)若AB=4,AE=2,求四边形BEDF的周长.
六.正方形的判定(共1小题)
9.(2022•邵阳)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E,F在对角线BD上,且BE=DF,OE=OA.
求证:四边形AECF是正方形.
七.切线的性质(共1小题)
10.(2022•邵阳)如图,已知DC是⊙O的直径,点B为CD延长线上一点,AB是⊙O的切线,点A为切点,且AB=AC.
(1)求∠ACB的度数;
(2)若⊙O的半径为3,求圆弧的长.
八.旋转的性质(共1小题)
11.(2023•邵阳)如图,在等边三角形ABC中,D为AB上的一点,过点D作BC的平形线DE交AC于点E,点P是线段DE上的动点(点P不与D、E重合).将△ABP绕点A逆时针方向旋转60°,得到△ACQ,连接EQ、PQ,PQ交AC于F.
(1)证明:在点P的运动过程中,总有∠PEQ=120°.
(2)当为何值时,△AQF是直角三角形?
九.相似三角形的判定与性质(共1小题)
12.(2023•邵阳)如图,CA⊥AD,ED⊥AD,点B是线段AD上的一点,且CB⊥BE.已知AB=8,AC=6,DE=4.
(1)证明:△ABC∽△DEB.
(2)求线段BD的长.
一十.解直角三角形的应用-仰角俯角问题(共1小题)
13.(2023•邵阳)我国航天事业捷报频传,2023年5月30日,被誉为“神箭”的长征二号F运载火箭托举神舟十六号载人飞船跃入苍穹,中国空间站应用与发展阶段首次载人发射任务取得圆满成功.如图,有一枚运载火箭从地面O处发射,当火箭到达P处时,地面A处的雷达站测得AP距离是5000m,仰角为23°,9s后,火箭直线到达Q处,此时地面A处雷达站测得Q处的仰角为45°,求火箭从P到Q处的平均速度(结果精确到1m/s).
(参考数据:sin23°≈0.39,cos23°≈0.92,tan23°≈0.42)
一十一.解直角三角形的应用-方向角问题(共1小题)
14.(2022•邵阳)如图,一艘轮船从点A处以30km/h的速度向正东方向航行,在A处测得灯塔C在北偏东60°方向上,继续航行1h到达B处,这时测得灯塔C在北偏东45°方向上,已知在灯塔C的四周40km内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.(提示:≈1.414,≈1.732)
一十二.中位数(共1小题)
15.(2021•邵阳)为落实湖南省共青团“青年大学习”的号召,某校团委针对该校学生每周参加“青年大学习”的时间(单位:h)进行了随机抽样调查,并将获得的数据绘制成如下统计表和如图所示的统计图,请根据图表中的信息回答下列问题.
周学习时间
频数
频率
0≤t<1
5
0.05
1≤t<2
20
0.20
2≤t<3
a
0.35
3≤t<4
25
m
4≤t≤5
15
0.15
(1)求统计表中a,m的值.
(2)甲同学说“我的周学习时间是此次抽样调查所得数据的中位数”.求甲同学的周学习时间在哪个范围内.
(3)已知该校学生约有2000人,试估计该校学生每周参加“青年大学习”的时间不少于3h的人数.
湖南省邵阳市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
参考答案与试题解析
一.实数的运算(共3小题)
1.(2023•邵阳)计算:tan45°+()﹣1+|﹣2|.
【答案】5.
【解答】解:原式=1+2+2
=5.
2.(2022•邵阳)计算:(π﹣2)0+(﹣)﹣2﹣2sin60°.
【答案】5﹣.
【解答】解:原式=1+4﹣2×
=1+4﹣
=5﹣.
3.(2021•邵阳)计算:(2021﹣π)0﹣|﹣2|﹣tan60°.
【答案】﹣1.
【解答】解:原式=1﹣(2﹣)﹣
=1﹣2+﹣
=﹣1.
二.整式的混合运算—化简求值(共1小题)
4.(2023•邵阳)先化简,再求值:(a﹣3b)(a+3b)+(a﹣3b)2,其中a=﹣3,b=.
【答案】24.
【解答】解:(a﹣3b)(a+3b)+(a﹣3b)2
=a2﹣(3b)2+(a2﹣6ab+9b2)
=a2﹣9b2+a2﹣6ab+9b2
=2a2﹣6ab,
当a=﹣3,时,原式==24.
三.分式的化简求值(共2小题)
5.(2022•邵阳)先化简,再从﹣1,0,1,中选择一个合适的x值代入求值.
(+)÷.
【答案】.
【解答】解:原式=•
=,
又∵x≠﹣1,0,1,
∴x可以取,此时原式==.
6.(2021•邵阳)先化简,再从﹣1,0,1,2,+1中选择一个合适的x的值代入求值.(1﹣)÷.
【答案】,x取0,原式=﹣1或x取2,原式=1或x取,原式=.
【解答】解:原式=
=,
又∵x≠±1,
∴x可以取0,此时原式=﹣1;
x可以取2,此时原式=1;
x可以取,此时原式=.
四.一元一次不等式的应用(共1小题)
7.(2022•邵阳)2022年2月4日至20日冬季奥运会在北京举行.某商店特购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,“冰墩墩”挂件的进价为50元/个.
(1)若购进“冰墩墩”摆件和挂件共花费了11400元,请分别求出购进“冰墩墩”摆件和挂件的数量.
(2)该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2900元,求购进的“冰墩墩”挂件不能超过多少个?
【答案】见试题解答内容
【解答】解:(1)设购进“冰墩墩”摆件x个,“冰墩墩”挂件y个,
依题意得:,
解得:.
答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.
(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180﹣m)个,
依题意得:(60﹣50)m+(100﹣80)(180﹣m)≥2900,
解得:m≤70.
答:购进的“冰墩墩”挂件不能超过70个.
五.正方形的性质(共1小题)
8.(2021•邵阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F是对角线AC上的两点,且AE=CF.连接DE,DF,BE,BF.
(1)证明:△ADE≌△CBF.
(2)若AB=4,AE=2,求四边形BEDF的周长.
【答案】(1)见解析;
(2)8.
【解答】(1)证明:由正方形对角线平分每一组对角可知:∠DAE=∠BCF=45°,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(SAS).
(2)解:∵AB=AD=,
∴BD===8,
由正方形对角线相等且互相垂直平分可得:AC=BD=8,DO=BO=4,OA=OC=4,
又AE=CF=2,
∴OA﹣AE=OC﹣CF,
即OE=OF=4﹣2=2,
故四边形BEDF为平行四边形.
∵∠DOE=90°,
∴四边形BEDF是菱形,
∴DE===2.
∴4DE=,
故四边形BEDF的周长为8.
六.正方形的判定(共1小题)
9.(2022•邵阳)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E,F在对角线BD上,且BE=DF,OE=OA.
求证:四边形AECF是正方形.
【答案】证明过程见解答部分.
【解答】证明:∵四边形ABCD是菱形,
∴AC⊥BD,OA=OC,OB=OD,
∵BE=DF,
∴OE=OF,
∴四边形AECF是菱形;
∵OE=OA=OF,
∴OE=OF=OA=OC,即EF=AC,
∴平行四边形AECF是矩形,即∠AEC=90°,
∴菱形AECF是正方形.
七.切线的性质(共1小题)
10.(2022•邵阳)如图,已知DC是⊙O的直径,点B为CD延长线上一点,AB是⊙O的切线,点A为切点,且AB=AC.
(1)求∠ACB的度数;
(2)若⊙O的半径为3,求圆弧的长.
【答案】(1)30°;(2)2π.
【解答】解:(1)连接OA,
∵AB是⊙O的切线,点A为切点,
∴∠BAO=90°,
又∵AB=AC,OA=OC,
∴∠B=∠ACB=∠OAC,
设∠ACB=x°,则在△ABC中,
x°+x°+x°+90°=180°,
解得:x=30,
∴∠ACB的度数为30°;
(2)∵∠ACB=∠OAC=30°,
∴∠AOC=120°,
∴=2π.
八.旋转的性质(共1小题)
11.(2023•邵阳)如图,在等边三角形ABC中,D为AB上的一点,过点D作BC的平形线DE交AC于点E,点P是线段DE上的动点(点P不与D、E重合).将△ABP绕点A逆时针方向旋转60°,得到△ACQ,连接EQ、PQ,PQ交AC于F.
(1)证明:在点P的运动过程中,总有∠PEQ=120°.
(2)当为何值时,△AQF是直角三角形?
【答案】(1)见解析过程;
(2).
【解答】(1)证明:∵将△ABP绕点A逆时针方向旋转60°,
∴PA=QA,∠PAQ=60°,
∴△APQ是等边三角形,
∴∠AQP=60°,
∵DE∥BC,
∴∠AED=∠ACB=60°,
∴∠AQP=∠AED,
∴点A,点P,点E,点Q四点共圆,
∴∠PAQ+∠PEQ=180°,
∴∠PEQ=120°;
(2)解:如图,
根据题意:只有当∠AFQ=90°时,成立,
∵△ABP绕点A逆时针方向旋转60°,得到△ACQ,
∴∠PAQ=60°,AP=AQ,
∴△APQ是等边三角形,
∴∠PAQ=60°,
∵∠AFQ=90°,
∴∠PAF=∠QAF=30°,
∵△ABC是等边三角形,
∴∠ABC=∠BCA=∠CAB=60°,
∵DE∥BC,
∴∠ADP=∠ABC=60°,
∴∠DAP=30°,∠APD=90°,
∴tan∠ADP=tan60°==.
九.相似三角形的判定与性质(共1小题)
12.(2023•邵阳)如图,CA⊥AD,ED⊥AD,点B是线段AD上的一点,且CB⊥BE.已知AB=8,AC=6,DE=4.
(1)证明:△ABC∽△DEB.
(2)求线段BD的长.
【答案】(1)见解析;
(2)3.
【解答】(1)证明:∵CA⊥AD,ED⊥AD,CB⊥BE,
∴∠A=∠CBE=∠D=90°,
∴∠C+∠CBA=90°,∠CBA+∠DBE=90°,
∴∠C=∠DBE,
∴△ABC∽△DEB;
(2)解:∵△ABC∽△DEB,
∴=,
∴=,
∴BD=3.
一十.解直角三角形的应用-仰角俯角问题(共1小题)
13.(2023•邵阳)我国航天事业捷报频传,2023年5月30日,被誉为“神箭”的长征二号F运载火箭托举神舟十六号载人飞船跃入苍穹,中国空间站应用与发展阶段首次载人发射任务取得圆满成功.如图,有一枚运载火箭从地面O处发射,当火箭到达P处时,地面A处的雷达站测得AP距离是5000m,仰角为23°,9s后,火箭直线到达Q处,此时地面A处雷达站测得Q处的仰角为45°,求火箭从P到Q处的平均速度(结果精确到1m/s).
(参考数据:sin23°≈0.39,cos23°≈0.92,tan23°≈0.42)
【答案】火箭从A处到B处的平均速度294m/s.
【解答】解:由题意可得:∠PAO=23°,∠QAO=45°,AP=5000m,
则PO=APsin23°=5000×0.39≈1950(m),
AO=APcos23°=5000×0.92≈4600(m),
∴OQ=AO=4600m,
∴PQ=OQ﹣OP=4600﹣1950=2650(m),
则火箭从P处到Q处的平均速度为:2650÷9≈294(m/s),
答:火箭从A处到B处的平均速度294m/s.
一十一.解直角三角形的应用-方向角问题(共1小题)
14.(2022•邵阳)如图,一艘轮船从点A处以30km/h的速度向正东方向航行,在A处测得灯塔C在北偏东60°方向上,继续航行1h到达B处,这时测得灯塔C在北偏东45°方向上,已知在灯塔C的四周40km内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.(提示:≈1.414,≈1.732)
【答案】安全,理由见解答.
【解答】解:安全,理由如下:
过点C作CD垂直AB,
由题意可得,∠CAD=90°﹣60°=30°,∠CBD=90°﹣45°=45°,AB=30×1=30km,
在Rt△CBD中,设CD=BD=xkm,则AD=(x+30)km,
在Rt△ACD中,tan30°=,
∴,
∴,
解得:x=15+15≈40.98>40,
所以,这艘轮船继续向正东方向航行是安全的.
一十二.中位数(共1小题)
15.(2021•邵阳)为落实湖南省共青团“青年大学习”的号召,某校团委针对该校学生每周参加“青年大学习”的时间(单位:h)进行了随机抽样调查,并将获得的数据绘制成如下统计表和如图所示的统计图,请根据图表中的信息回答下列问题.
周学习时间
频数
频率
0≤t<1
5
0.05
1≤t<2
20
0.20
2≤t<3
a
0.35
3≤t<4
25
m
4≤t≤5
15
0.15
(1)求统计表中a,m的值.
(2)甲同学说“我的周学习时间是此次抽样调查所得数据的中位数”.求甲同学的周学习时间在哪个范围内.
(3)已知该校学生约有2000人,试估计该校学生每周参加“青年大学习”的时间不少于3h的人数.
【答案】(1)35、0.25;(2)甲同学的周学习时间在2≤t<3范围内;(3)800.
【解答】解:(1)∵样本容量为5÷0.05=100,
∴a=100×0.35=35,m=25÷100=0.25;
(2)∵一共有100个数据,其中位数是第50、51个数据的平均数,而这2个数据均落在2≤t<3范围内,
∴甲同学的周学习时间在2≤t<3范围内;
(3)估计该校学生每周参加“青年大学习”的时间不少于3h的人数为2000×(0.25+0.15)=800(人).
相关试卷
这是一份湖南省湘西州2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共14页。试卷主要包含了0﹣﹣|﹣5|+4sin45°,解不等式组,,过点B作BC⊥x轴于点C,进行了统计等内容,欢迎下载使用。
这是一份湖南省益阳市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共11页。试卷主要包含了+÷,÷,其中x=﹣1,的直线设为y=kx+b等内容,欢迎下载使用。
这是一份湖南省娄底市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共14页。试卷主要包含了0+|1﹣|+﹣tan60°,﹣1+|1﹣|﹣2sin60°,﹣1﹣2cs45°等内容,欢迎下载使用。