终身会员
搜索
    上传资料 赚现金
    第十章 概率、随机变量及其分布列-备战高考数学专题测试模拟卷(新高考专用)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      第十章 概率、随机变量及其分布列-备战高考数学专题测试模拟卷(新高考专用)(解析卷).docx
    • 练习
      第十章 概率、随机变量及其分布列-备战高考数学专题测试模拟卷(新高考专用)(原题卷).docx
    第十章 概率、随机变量及其分布列-备战高考数学专题测试模拟卷(新高考专用)01
    第十章 概率、随机变量及其分布列-备战高考数学专题测试模拟卷(新高考专用)02
    第十章 概率、随机变量及其分布列-备战高考数学专题测试模拟卷(新高考专用)03
    第十章 概率、随机变量及其分布列-备战高考数学专题测试模拟卷(新高考专用)01
    第十章 概率、随机变量及其分布列-备战高考数学专题测试模拟卷(新高考专用)02
    第十章 概率、随机变量及其分布列-备战高考数学专题测试模拟卷(新高考专用)03
    还剩16页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第十章 概率、随机变量及其分布列-备战高考数学专题测试模拟卷(新高考专用)

    展开
    这是一份第十章 概率、随机变量及其分布列-备战高考数学专题测试模拟卷(新高考专用),文件包含第十章概率随机变量及其分布列-备战高考数学专题测试模拟卷新高考专用解析卷docx、第十章概率随机变量及其分布列-备战高考数学专题测试模拟卷新高考专用原题卷docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。

    备战高考阶段性检测名校重组卷(新高考)
    概率、随机变量及其分布列
    本试卷22小题,满分150分。考试用时120分钟
    一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
    1.(2023·吉林·统考二模)对于事件A与事件B,下列说法错误的是(    )
    A.若事件A与事件B互为对立事件,则P(A)+P(B)=1
    B.若事件A与事件B相互独立,则P(AB)=P(A)P(B)
    C.若P(A)+P(B)=1,则事件A与事件B互为对立事件
    D.若P(AB)=P(A)P(B),则事件A与事件B相互独立
    【答案】C
    【解析】对于A,事件A和事件B为对立事件,则A,B中必然有一个发生, ,正确;
    对于B,根据独立事件的性质知 ,正确;
    对于C,由 ,并不能得出A与B是对立事件,举例说有a,b,c,d4个小球,
    选中每个小球的概率是相同的,事件A表示选中a,b两球,则 ,事件B表示选中b,c两球,则 ,
    ,但A,B不是对立事件,错误;、
    对于D,由独立事件的性质知:正确;
    故选:C.
    2.(2023·广东深圳·统考二模)从1,2,3,4,5中随机选取三个不同的数,若这三个数之积为偶数,则它们之和大于8的概率为(    )
    A. B. C. D.
    【答案】D
    【解析】从1,2,3,4,5中随机选取三个不同的数可得基本事件为,10种情况,
    若这三个数之积为偶数有,9种情况,
    它们之和大于8共有 ,5种情况,
    从1,2,3,4,5中随机选取三个不同的数,若这三个数之积为偶数,则它们之和大于8的概率为.
    故选:D.
    3.(2023·山东烟台·统考二模)口袋中装有编号分别为1,2,3的三个大小和形状完全相同的小球,从中任取2个球,记取出的球的最大编号为,则(    )
    A. B. C. D.
    【答案】A
    【分析】先求随机变量的分布列,再运用公式求
    【详解】由题意,可能取值为2,3
    包含事件为取出的两个球为1,2
    所以
    包含事件为取出的两个球为1,3或2,3
    所以

    .
    故选:A.
    4.(河北省唐山市2023届高三三模数学试题)假设有两箱零件,第一箱内装有5件,其中有2件次品;第二箱内装有10件,其中有3件次品.现从两箱中随机挑选1箱,然后从该箱中随机取1个零件,若取到的是次品,则这件次品是从第一箱中取出的概率为(    )
    A. B. C. D.
    【答案】D
    【分析】根据条件概率的计算公式可算出答案.
    【详解】设事件表示从第一箱中取一个零件,事件表示取出的零件是次品,
    则,
    故选:D
    5.(福建省宁德市普通高中2023届高三质量检测数学试题)某地生产红茶已有多年,选用本地两个不同品种的茶青生产红茶.根据其种植经验,在正常环境下,甲、乙两个品种的茶青每500克的红茶产量(单位:克)分别为,且,其密度曲线如图所示,则以下结论错误的是(    )

    A.的数据较更集中
    B.
    C.甲种茶青每500克的红茶产量超过的概率大于
    D.
    【答案】D
    【分析】根据正态分布曲线的性质和特点求解.
    【详解】对于A,Y的密度曲线更尖锐,即数据更集中,正确;
    对于B,因为c与 之间的与密度曲线围成的面积 与密度曲线围成的面积 ,
    ,正确;
    对于C, , 甲种茶青每500克超过 的概率 ,正确;
    对于D,由B知: ,错误;
    故选:D.
    6.(2023·辽宁·鞍山一中校联考模拟预测)某医用口罩生产厂家生产医用普通口罩、医用外科口罩、医用防护口罩三种产品,三种产品的生产比例如图所示,且三种产品中绑带式口罩的比例分别为90%,50%,40%.若从该厂生产的口罩中任选一个,则选到绑带式口罩的概率为(    )

    A.0.23 B.0.47 C.0.53 D.0.77
    【答案】D
    【解析】由图可知医用普通口罩、医用外科口罩、医用防护口罩的占比分别为70%,20%,10%,
    记事件分别表示选到医用普通口罩、医用外科口罩、医用防护口罩,则,且两两互斥,
    所以,
    又三种产品中绑带式口罩的比例分别为90%,50%,40%,
    记事件为“选到绑带式口罩”,则
    所以由全概率公式可得选到绑带式口罩的概率为.
    故选:D.
    7.(2023山东青岛一模)某次考试共有4道单选题,某学生对其中3道题有思路,1道题完全没有思路.有思路的题目每道做对的概率为0.8,没有思路的题目,只好任意猜一个答案,猜对的概率为0.25.若从这4道题中任选2道,则这个学生2道题全做对的概率为( )
    A. 0.34 B. 0.37 C. 0.42 D. 0.43
    【答案】C
    【解析】设事件表示“两道题全做对”,
    若两个题目都有思路,则,
    若两个题目中一个有思路一个没有思路,则,
    故,
    故选:C
    8.(2023四川成都模拟)年末,武汉岀现新型冠状病毒肺炎()疫情,并快速席卷我国其他地区,传播速度很快,因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大,武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从月日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人,在排查期间,一户口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”,设该家庭每个成员检测呈阳性的概率均为且相互独立,该家庭至少检测了个人才能确定为“感染高危户”的概率为,当时,最大,则( )
    A. B. C. D.
    【答案】A
    【解析】设事件:检测个人确定为“感染高危户”,事件:检测个人确定为“感染高危户”,∴,,即
          ,设,则
          ,∴,当且仅当即时取等号,即.
    二、多项选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。
    9.(2023·广东惠州·统考二模)下列四个命题中为真命题的是(    )
    A.若随机变量服从二项分布,则
    B.若随机变量服从正态分布,且,则
    C.已知一组数据的方差是3,则的方差也是3
    D.对具有线性相关关系的变量,其线性回归方程为,若样本点的中心为,则实数的值是4
    【答案】AC
    【解析】对于A,由于,则,故A正确;
    对于B,,故,故B错误;
    对于C,的方差是3,则的方差不变,故C正确;
    对于D,回归方程必过样本中心点,则,解得,故D错误.
    故选:AC.
    10.(2023·浙江台州·统考二模)已知,随机变量的分布列为:








    则(    )
    A. B.
    C. D.
    【答案】BC
    【分析】根据期望方差的相关公式,以及判断,再举特例判断D即可.
    【详解】因为,所以错,
    因为,所以对,
    因为

    所以,所以,所以对,
    举特例来说明错,取,
    则,



    ,所以错.
    故选:BC
    11(2023·河南安阳·安阳一中校联考模拟预测)立德中学举行“学习党代会,奋进新征程”交流会,共有6位老师、4位学生进行发言.现用抽签的方式决定发言顺序,事件表示“第k位发言的是学生”,则(    )
    A. B.
    C. D.
    【答案】C
    【解析】因为,所以A错误.
    因为,所以B错误.
    因为,所以C正确.
    因为,所以D错误.
    故选:C
    12.(2023·广东湛江·统考二模)廉江红橙是广东省廉江市特产、中国国家地理标志产品.设廉江地区某种植园成熟的红橙单果质量(单位:g)服从正态分布,且,.下列说法正确的是(    )
    A.若从种植园成熟的红橙中随机选取1个,则这个红橙的质量小于167 g的概率为0.7
    B.若从种植园成熟的红橙中随机选取1个,则这个红橙的质量在167 g~168 g的概率为0.05
    C.若从种植园成熟的红橙中随机选取600个,则质量大于163 g的个数的数学期望为480
    D.若从种植园成熟的红橙中随机选取600个,则质量在163 g~168 g的个数的方差为136.5
    【答案】BCD
    【解析】因为,所以,所以A错误.
    因为,所以,所以B正确.
    ,若从种植园成熟的红橙中随机选取600个,则质量大于163 g的个数.所以,所以C正确.
    因为,所以,又因为,所以,则,
    所以,
    若从种植园成熟的红橙中随机选取600个,则质量在163 g~168 g的个数,所以,所以D正确.
    故选:BCD
    三、填空题:本大题共4小题,每小题5分,共20分。
    13.(2023·辽宁丹东·统考二模)已知,,,那么____________.
    【答案】
    【解析】因为,所以,
    因为,所以,
    因为,所以,
    所以.
    14.(2023山东烟台一模)某企业的一批产品由一等品零件、二等品零件混装而成,每包产品均含有10个零件.小张到该企业采购,利用如下方法进行抽检:从该企业产品中随机抽取1包产品,再从该包产品中随机抽取4个零件,若抽取的零件都是一等品,则决定采购该企业产品;否则,拒绝采购.假设该企业这批产品中,每包产品均含1个或2个二等品零件,其中含2个二等品零件的包数占,则小张决定采购该企业产品的概率为______.
    【答案】
    【解析】根据题意,该企业这批产品中,含2个二等品零件的包数占,则含1个二等品零件的包数占,
    在含1个二等品零件产品中,随机抽取4个零件,若抽取的4个零件都是一等品,其概率,
    在含2个二等品零件产品中,随机抽取4个零件,若抽取的4个零件都是一等品,其概率,
    则小张决定采购该企业产品的概率;
    故答案为:.
    15.(2023·山东青岛·统考二模)某市高三年级男生的身高(单位:)近似服从正态分布,已知,若.写出一个符合条件的的值为__________.
    【答案】(中的任意一个数均可)
    【分析】利用正态曲线的对称性即可求解.
    【详解】​​​​​​​因为,且,
    则,且,
    故若,则.
    故答案为:(中的任意一个数均可).
    16.(天津市2023届高三三模数学试题)现有4个红球和4个黄球,将其分配到甲、乙两个盒子中,每个盒子中4个球.甲盒子中有2个红球和2个黄球的概率为________;甲盒子中有3个红球和1个黄球,若同时从甲、乙两个盒子中取出个球进行交换,记交换后甲盒子中的红球个数为,的数学期望为,则________.
    【答案】 ; 4.
    【分析】根据超几何分布,即可求解甲盒子中有2个红球和2个黄球的概率;当时,X的取值可能是2,3,4;当时,X的取值可能是0,1,2,利用超几何分布分布求出对应的概率,结合数学期望的公式分布计算即可求解.
    【详解】由题可知,
    甲盒子中有2个红球和2个黄球的概率;
    当时,X的取值可能是2,3,4,
    且,,,
    则.
    当时,X的取值可能是0,1,2,
    且,,,
    则.
    故.
    故答案为:;4.
    四、解答题:本大题共6小题,共70分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。
    17.(2023·江苏·统考三模)综合素质评价是高考招生制度改革的内容之一.某高中采用多维评分的方式进行综合素质评价.下图是该校高三学生“运动与建康”评价结果的频率直方图,评分在区间[90,100),[70,90),[60,70),[50,60)上,分别对应为A,B,C,D四个等级.为了进一步引导学生对运动与健康的重视,初评获A等级的学生不参加复评,等级不变,对其余学生学校将进行一次复评.复评中,原获B等级的学生有的概率提升为A等级:原获C等级的学生有的概率提升为B等级:原获D等级的学生有的概率提升为C等级.用频率估计概率,每名学生复评结果相互独立.

    (1)若初评中甲获得B等级,乙、丙获得C等级,记甲、乙、丙三人复评后等级为B等级的人数为ξ,求ξ的分布列和数学期望;
    (2)从全体高三学生中任选1人,在已知该学生是复评晋级的条件下,求他初评是C等级的概率.
    【答案】(1)分布列见解析,
    (2)
    【详解】(1)的所有可能取值为0,1,2,3,
    ,,
    ,,
    ∴的分布列如下:

    0
    1
    2
    3
    P





    (2)记事件A为“该学生复评晋级”,事件B为“该学生初评是C”,

    18.(2023·山东淄博·统考二模)两个安全设备间由一组对接码进行“握手”连接,对接码是一个由“1,2,3,4”4个数字组成的六位数,每个数字至少出现一次.
    (1)求满足条件的对接码的个数;
    (2)若对接密码中数字1出现的次数为,求的分布列和数学期望.
    【答案】(1)1560
    (2)分布列见解析,
    【分析】(1)分一个数字出现3次,另外三个数字出现1次和两个数字各出现2次,另外两数字各出现1次讨论即可;
    (2)首先得到的取值为,分别写出其概率,利用均值公式即可得到答案.
    【详解】(1)当对接码中一个数字出现3次,另外三个数字各出现1次时,种数为:,
    当对接码中两个数字各出现2次,另外两个数字各出现1次时,
    种数为:,
    所有满足条件的对接码的个数为1560.
    (2)随机变量的取值为,其分布列为:



    故概率分布表为:








    故.
    19.(2023·安徽黄山·统考三模)英国数学家贝叶斯(1701-1763)在概率论研究方面成就显著,创立了贝叶斯统计理论,对于统计决策函数、统计推断等做出了重要贡献.贝叶斯公式就是他的重大发现,它用来描述两个条件概率之间的关系.该公式为:设,,…,是一组两两互斥的事件,,且,,则对任意的事件,,有,. 现有三台车床加工同一型号的零件,第台加工的次品率为,每加工一个零件耗时分钟,第,台加工的次品率均为,每加工一个零件分别耗时分钟和分钟,加工出来的零件混放在一起.已知第,,台车床加工的零件数分别占总数的,,.
    (1)任取一个零件,计算它是次品的概率;
    (2)如果取到的零件是次品,计算加工这个零件耗时(分钟)的分布列和数学期望.
    【答案】(1)0.0525
    (2)分布列见解析,期望为32(分钟)
    【详解】(1)设“任取一个零件为次品”,“零件为第台车床加工”(),
    则,且两两互斥.
    根据题意,
    .
    由全概率公式,得
    .
    (2)由题意知,则

    同理得,
    所以加工这个零件耗时的分布列为:

    35
    32
    30




    (分钟).
    20.(2023·广东湛江·统考一模)某工厂一台设备生产一种特定零件,工厂为了解该设备的生产情况,随机抽检了该设备在一个生产周期中的100件产品的关键指标(单位:),经统计得到下面的频率分布直方图:

    (1)由频率分布直方图估计抽检样本关键指标的平均数和方差.(用每组的中点代表该组的均值)
    (2)已知这台设备正常状态下生产零件的关键指标服从正态分布,用直方图的平均数估计值作为的估计值,用直方图的标准差估计值s作为估计值.
    (i)为了监控该设备的生产过程,每个生产周期中都要随机抽测10个零件的关键指标,如果关键指标出现了之外的零件,就认为生产过程可能出现了异常,需停止生产并检查设备.下面是某个生产周期中抽测的10个零件的关键指标:
    0.8
    1.2
    0.95
    1.01
    1.23
    1.12
    1.33
    0.97
    1.21
    0.83
    利用和判断该生产周期是否需停止生产并检查设备.
    (ii)若设备状态正常,记X表示一个生产周期内抽取的10个零件关键指标在之外的零件个数,求及X的数学期望.
    参考公式:直方图的方差,其中为各区间的中点,为各组的频率.
    参考数据:若随机变量X服从正态分布,则,,,,.
    【解析】(1)由频率分布直方图,得.

    (2)(i)由(1)可知,,
    所以,,
    显然抽查中的零件指标,故需停止生产并检查设备.
    (ii)抽测一个零件关键指标在之内的概率为,
    所以抽测一个零件关键指标在之外的概率为,
    故,所以,
    X的数学期望.
    21.(2023·湖南岳阳·统考三模)某大型商场为了回馈广大顾客,设计了一个抽奖活动,在抽奖箱中放8个大小相同的小球,其中4个为红色,4个为黑色.抽奖方式为:每名顾客进行两次抽奖,每次抽奖从抽奖箱中一次性摸出两个小球.如果每次抽奖摸出的两个小球颜色相同即为中奖,两个小球颜色不同即为不中奖.
    (1)若规定第一次抽奖后将球放回抽奖箱,再进行第二次抽奖,求中奖次数的分布列和数学期望.
    (2)若规定第一次抽奖后不将球放回抽奖箱,直接进行第二次抽奖,求中奖次数的分布列和数学期望.
    (3)如果你是商场老板,如何在上述问两种抽奖方式中进行选择?请写出你的选择及简要理由.
    【答案】(1)分布列见解析;期望为
    (2)分布列见解析;期望为
    (3)答案见解析
    【详解】(1)若第一次抽奖后将球放回抽奖箱,再进行第二次抽奖,则每次中奖的概率为,
    因为两次抽奖相互独立,所以中奖次数服从二项分布,即,所以的所有可能取值为,则



    所以的分布列为

    0
    1
    2




    所以的数学期望.
    (2)若第一次抽奖后不将球放回抽奖箱,直接进行第二次抽奖,中奖次数的所有可能取值为,则



    所以的分布列为

    0
    1
    2




    所以的数学期望为.
    (3)因为(1)(2)两问的数学期望相等,第(1)问中两次奖的概率比第(2)问的小,即,
    第(1)问中不中奖的概率比第问小,即,
    回答一:若商场老板希望中两次奖的顾客多,产生宣传效应,则选择按第(2)问方式进行抽;
    回答二:若商场老板希望中奖的顾客多,则选择按第(1)问方式进行抽奖.
    22.(2023·黑龙江大庆·统考三模)天宫空间站是我国建成的国家级太空实验室,由天和核心舱、问天实验舱和梦天实验舱组成,已经开启长期有人驻留模式,结合空间站的相关知识,某职业学校的老师设计了以空间站为主题的编程训练,训练内容由“太空发射”、“自定义漫游”、“全尺寸太阳能”、“空间运输”等10个相互独立的编程题目组成,训练要求每个学生必须选择两个不同的题目进行编程练习,并且学生间的选择互不影响,老师将班级学生分成四组,指定甲、乙、丙、丁为组长.
    (1)求甲、乙、丙、丁这四个人中至少有一人选择“太空发射”的概率;
    (2)记X为这四个人中选择“太空发射”的人数,求X的分布列及数学期望;
    (3)如果班级有n个学生参与编程训练(其中n是能被5整除的正整数),则这n个学生中选择“太空发射”的人数最有可能是多少人?
    【答案】(1);
    (2)分布列见解析,数学期望为;
    (3)答案见解析.
    【详解】(1)由题意可知,每个人不选择“太空发射”的概率为,
    所以甲、乙、丙、丁这4个人都不选择“太空发射”的概率为
    故甲、乙、丙、丁这4个人中至少有一人选择“太空发射”的概率
    (2)由已知的可能取值有,
    因为每个人选择“太空发射”的概率为,且每个人是否选择“太空发射”相互独立,
    所以服从二项分布:,
    所以,
    即,
    ,,,
    则的概率分布列为:

    0
    1
    2
    3
    4






    所以的数学期望.
    (3)设选择“太空发射”的人数最有可能为人,
    则,

    ,即
    即,也即
    解得,
    又因为,当,,
    则不等式为,
    所以,
    即当被5整除时,选择“太空发射”的人数最有可能是人
    .


    相关试卷

    第十章 概率、随机变量及其分布列-备战2024年高考数学重难点专题测试模拟卷(新高考专用): 这是一份第十章 概率、随机变量及其分布列-备战2024年高考数学重难点专题测试模拟卷(新高考专用),文件包含第十章概率随机变量及其分布列-备战高考数学专题测试模拟卷新高考专用解析卷docx、第十章概率随机变量及其分布列-备战高考数学专题测试模拟卷新高考专用原题卷docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。

    第十章 概率、随机变量及其分布列-备考2024年高考数学专题测试模拟卷(新高考专用): 这是一份第十章 概率、随机变量及其分布列-备考2024年高考数学专题测试模拟卷(新高考专用),文件包含第十章概率随机变量及其分布列-备战2024年高考数学专题测试模拟卷新高考专用解析卷docx、第十章概率随机变量及其分布列-备战2024年高考数学专题测试模拟卷新高考专用原题卷docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。

    易错点14 统计、概率、离散型随机变量及其分布列-备战2024年高考数学考试易错题(新高考专用): 这是一份易错点14 统计、概率、离散型随机变量及其分布列-备战2024年高考数学考试易错题(新高考专用),文件包含易错点14统计概率离散型随机变量及其分布列-备战2024年高考数学考试易错题新高考专用解析版docx、易错点14统计概率离散型随机变量及其分布列-备战2024年高考数学考试易错题新高考专用原卷版docx等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        第十章 概率、随机变量及其分布列-备战高考数学专题测试模拟卷(新高考专用)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map