天津市北辰区2023届高三三模数学试题 Word版无答案
展开北辰区2023年高考模拟考试试卷
数学
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.祝各位考生考试顺利!
第Ⅰ卷
注意事项:
1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.
2.本卷共9小题,每小题5分,共45分.
参考公式:
·如果事件A,B互斥,那么.
·如果事件A,B相互独立,那么.
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 设集合,,,则( )
A. B. C. D.
2. 已知为非零实数,则“”是“”的( )
A. 充分不必要条件 B. 必要不充分条件
C. 充要条件 D. 既不充分也不必要条件
3. 函数的图象大致为( )
A. B.
C. D.
4. 少年强则国强,少年智则国智.党和政府一直重视青少年的健康成长,出台了一系列政策和行动计划,提高学生身体素质.为了加强对学生的营养健康监测,某校在3000名学生中,抽查了100名学生的体重数据情况.根据所得数据绘制样本的频率分布直方图如图所示,则下列结论正确的是( )
A. 样本的众数为65 B. 样本的第80百分位数为72.5
C. 样本的平均值为67.5 D. 该校学生中低于的学生大约为1000人
5. 设,,,则( )
A. B.
C. D.
6. 设,,则( )
A. B.
C. D.
7. 设、分别为双曲线(,)的左、右焦点.若在双曲线右支上存在点P,满足,且到直线的距离等于双曲线的实轴长,则该双曲线的渐近线与抛物线的准线围成三角形的面积为( )
A. B. C. D.
8. 中国雕刻技艺举世闻名,雕刻技艺的代表作“鬼工球”,取鬼斧神工的意思,制作相当繁复,成品美轮美奂.1966年,玉石雕刻大师吴公炎将这一雕刻技艺应用到玉雕之中,他把玉石镂成多层圆球,层次重叠,每层都可灵活自如的转动,是中国玉雕工艺的一个重大突破.今一雕刻大师在棱长为12的整块正方体玉石内部套雕出一个可以任意转动的球,在球内部又套雕出一个正四面体(所有棱长均相等的三棱锥),若不计各层厚度和损失,则最内层正四面体的棱长最长为( )
A B. C. D. 6
9. 已知函数(,,)的部分图象如图所示,关于该函数有下列四个说法:
①的图象关于点对称;
②图象关于直线对称;
③的图象可由的图象向左平移个单位长度得到;
⑧若方程在上有且只有两个极值点,则的最大值为.
以上四个说法中,正确的个数为( )
A. 1 B. 2 C. 3 D. 4
第Ⅱ卷
注意事项:
1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.
2.本卷共11小题,共105分.
二.填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.
10. 已知是虚数单位,复数的虚部为________.
11. 在的展开式中,的系数是________.
12. 直线经过点,与圆相交截得弦长为,则直线的方程为________.
13. 有两台车床加工同一型号的零件,第一台车床加工的优秀率为15%,第二台车床加工的优秀率为10%.假定两台车床加工的优秀率互不影响,则两台车床加工零件,同时出现优秀品的概率为________;若把加工出来的零件混放在一起,已知第一台车床加工的零件数占总数的60%,第二台车床加工的零件数占总数的40%,现任取一个零件,则它是优秀品的概率为________.
14. 在中,,,若为其重心,试用,表示为________;若为其外心,满足,且,则的最大值为________.
15. 设,对任意实数x,记.若有三个零点,则实数a的取值范围是________.
三.解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步.
16. 在中,角A,B,C所对的边分别为a,b,c.满足.
(1)求角B的大小;
(2)设,.
(ⅰ)求c的值;
(ⅱ)求的值.
17. 如图,在三棱锥中,底面,.点,,分别为棱,,的中点,是线段的中点,,.
(1)求证:平面;
(2)求点到直线的距离;
(3)在线段上是否存在一点,使得直线与平面所成角的正弦值为,若存在,求出线段的值,若不存在,说明理由.
18. 设是等差数列,其前项和为(),为等比数列,公比大于1.已知,,,.
(1)求和的通项公式;
(2)设,求的前项和;
(3)设,求证:.
19. 已知椭圆右顶点为A,上顶点为B,O为坐标原点,椭圆内一点M满足,.
(1)求椭圆离心率;
(2)椭圆上一点P在第一象限,且满,与椭圆交于点Q,直线交的延长线于点D.若的面积为,求椭圆的标准方程.
20. 已知函数,其中.
(1)当时,求函数在点上的切线方程.(其中e为自然对数的底数)
(2)已知关于x的方程有两个不相等的正实根,,且.
(ⅰ)求实数a的取值范围;
(ⅱ)设k为大于1的常数,当a变化时,若有最小值,求k的值.
天津市滨海新区2023届高三三模数学试题 Word版无答案: 这是一份天津市滨海新区2023届高三三模数学试题 Word版无答案,共6页。
天津市北辰区2023届高三三模数学试题 Word版含解析: 这是一份天津市北辰区2023届高三三模数学试题 Word版含解析,共23页。
天津市北辰区2023届高三数学三模试题(Word版附解析): 这是一份天津市北辰区2023届高三数学三模试题(Word版附解析),共23页。