高中数学(人教A版2019)选择性必修第三册 第六章 计数原理 章末检测(能力提升)(含解析)
展开第六章 计数原理章末检测(能力提升)
一、单项选择题
1、从集合{1,2,3,4,…,10}中,选出5个数组成子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有( )
A.32个 B.34个
C.36个 D.38个
2、展开式中的常数项为( )
A.90 B.20
C.540 D.600
3、6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )
A.120种 B.90种 C.60种 D.30种
4、C+2C+4C+…+2n-1C=( )
A.3n B.2·3n
C.-1 D.
5、六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )
A.192种 B.216种
C.240种 D.288种
6、甲、乙、丙3人站到共有6级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是( )
A.90 B.120 C.210 D.216
7、已知m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b.若13a=7b,则m=( )
A.5 B.6 C.7 D.8
8、某工程队有6辆不同的工程车,按下列方式分给工地进行作业,每个工地至少分1辆工程车,则下列结论正确的是( )
A.分给甲、乙、丙三地每地各2辆,有120种分配方式
B.分给甲、乙两地每地各2辆,分给丙、丁两地每地各1辆,有360种分配方式
C.分给甲、乙、丙三地,其中一地分4辆,另两地各分1辆,有60种分配方式
D.分给甲、乙、丙、丁四地,其中两地各分2辆,另两地各分1辆,有1 080种分配方式
二、多项选择题
9、对于二项式(n∈N*),以下判断正确的有( )
A.存在n∈N*,展开式中有常数项
B.对任意n∈N*,展开式中没有常数项
C.对任意n∈N*,展开式中没有x的一次项
D.存在n∈N*,展开式中有x的一次项
10、若3男3女排成一排,则下列说法错误的是( )
A.共计有720种不同的排法
B.男生甲排在两端的共有120种排法
C.男生甲、乙相邻的排法总数为120种
D.男女生相间排法总数为72种
11、若(1-2x)2 021=a0+a1x+a2x2+a3x3+…+a2 021x2 021(x∈R),则( )
A.a0=1
B.a1+a3+a5+…+a2 021=
C.a0+a2+a4+…+a2 020=
D.+++…+=-1
12、现有4个小球和4个小盒子,下面的结论正确的是( )
A.若4个不同的小球放入编号为1,2,3,4的盒子,则共有24种放法
B.若4个相同的小球放入编号为1,2,3,4的盒子,且恰有两个空盒的放法共有18种
C.若4个不同的小球放入编号为1,2,3,4的盒子,且恰有一个空盒的放法共有144种
D.若编号为1,2,3,4的小球放入编号为1,2,3,4的盒子,没有一个空盒但小球的编号和盒子的编号全不相同的放法共有9种
三、填空题
13、在(1-)7+的展开式中,若x2的系数为19,则a=________.
14、如图,现要用5种不同的颜色对某市的4个区县地图进行着色,要求有公共边的两个地区不能用同一种颜色,共有____________种不同的着色方法.
15、的展开式中常数项是________.
16、某宾馆安排A,B,C,D,E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则共有________种不同的安排方法.(用数字作答)
四、解答题
17、已知集合,表示平面上的点,问:
(1)P可表示平面上多少个第二象限的点?
(2)P可表示多少个不在直线上的点?
18、已知的展开式中的系数是-35,
(1)求的值;
(2)求的值.
19、已知有6本不同的书.
(1)分成三堆,每堆2本,有多少种不同的分堆方法?
(2)分成三堆,一堆1本,一堆2本,一堆3本,有多少种不同的分堆方法?
(3)分给甲、乙、丙三人,一人1本,一人2本,一人3本,有多少种不同的分配方法?
20、有标号为1,2,3,4,5,6的6个小球和标号为1,2,3,4的4个盒.
(1)从6个小球中选出4个放入4个盒中,每盒只放1个小球.
①求奇数号盒只放奇数号小球的不同放法种数;
②求奇数号小球必须放在奇数号盒中的不同放法种数.
(2)若不许空盒且将6个小球都放入4个盒中,求所有不同的放法种数.
21、在①只有第八项的二项式系数最大;②奇数项二项式系数之和为47;③各项系数之和为414;这三个条件中任选一个,补充在下面问题中,若问题中的k存在,求k的值;若k不存在,说明理由.
设二项式,若其展开式中,________,是否存在整数k,使得Tk是展开式中的常数项?
注:如果选择多个条件分别解答,按第一个解答给分.
22、已知10件不同的产品中有4件次品,现对它们一一测度,直至找到所有4件次品为止.
(1)若恰在第2次测试时,才测试到第一件次品,第8次才找到最后一件次品,则共有多少种不同的测试方法?
(2)若至多测试6次就能找到所有4件次品,则共有多少种不同的测试方法?