- 高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-等式与不等 试卷 1 次下载
- 高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-函数与导数 (1) 试卷 1 次下载
- 高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-函数与导数 试卷 2 次下载
- 高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-集合与常用 试卷 0 次下载
- 高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-计数原理与 (1) 试卷 0 次下载
高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-函数与导数 (2)
展开高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-函数与导数(解答题)
一、解答题
1.(2023年高考全国乙卷数学(理)真题)已知函数.
(1)当时,求曲线在点处的切线方程;
(2)是否存在a,b,使得曲线关于直线对称,若存在,求a,b的值,若不存在,说明理由.
(3)若在存在极值,求a的取值范围.
2.(测试使用,请勿下载(全国甲卷理数))已知函数
(1)当时,讨论的单调性;
(2)若恒成立,求a的取值范围.
3.(2023年高考全国乙卷数学(文)真题)已知函数.
(1)当时,求曲线在点处的切线方程.
(2)若函数在单调递增,求的取值范围.
4.(2023年高考全国甲卷数学(文)真题)已知函数.
(1)当时,讨论的单调性;
(2)若,求的取值范围.
5.(2023年新课标全国Ⅰ卷数学真题)在直角坐标系中,点到轴的距离等于点到点的距离,记动点的轨迹为.
(1)求的方程;
(2)已知矩形有三个顶点在上,证明:矩形的周长大于.
6.(2023年新课标全国Ⅰ卷数学真题)已知函数.
(1)讨论的单调性;
(2)证明:当时,.
7.(2023年新课标全国Ⅱ卷数学真题)(1)证明:当时,;
(2)已知函数,若是的极大值点,求a的取值范围.
8.(2022年全国新高考II卷数学试题)已知函数.
(1)当时,讨论的单调性;
(2)当时,,求a的取值范围;
(3)设,证明:.
9.(2022年全国高考乙卷数学(文)试题)已知函数.
(1)当时,求的最大值;
(2)若恰有一个零点,求a的取值范围.
10.(2022年全国高考甲卷数学(文)试题)已知函数,曲线在点处的切线也是曲线的切线.
(1)若,求a;
(2)求a的取值范围.
11.(2022年全国高考甲卷数学(理)试题)已知函数.
(1)若,求a的取值范围;
(2)证明:若有两个零点,则.
12.(2022年全国高考乙卷数学(理)试题)已知函数
(1)当时,求曲线在点处的切线方程;
(2)若在区间各恰有一个零点,求a的取值范围.
13.(2022年全国新高考I卷数学试题)已知函数和有相同的最小值.
(1)求a;
(2)证明:存在直线,其与两条曲线和共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.
14.(2021年全国新高考II卷数学试题)已知函数.
(1)讨论的单调性;
(2)从下面两个条件中选一个,证明:只有一个零点
①;
②.
15.(2021年全国新高考II卷数学试题)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,.
(1)已知,求;
(2)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程:的一个最小正实根,求证:当时,,当时,;
(3)根据你的理解说明(2)问结论的实际含义.
16.(2021年全国高考乙卷数学(理)试题)已知抛物线的焦点为,且与圆上点的距离的最小值为.
(1)求;
(2)若点在上,是的两条切线,是切点,求面积的最大值.
17.(2021年全国高考乙卷数学(理)试题)设函数,已知是函数的极值点.
(1)求a;
(2)设函数.证明:.
18.(2021年全国高考甲卷数学(文)试题)设函数,其中.
(1)讨论的单调性;
(2)若的图象与轴没有公共点,求a的取值范围.
19.(2021年全国高考甲卷数学(理)试题)已知函数.
(1)画出和的图像;
(2)若,求a的取值范围.
20.(2021年全国高考甲卷数学(理)试题)已知且,函数.
(1)当时,求的单调区间;
(2)若曲线与直线有且仅有两个交点,求a的取值范围.
21.(2021年全国高考乙卷数学(文)试题)已知函数.
(1)讨论的单调性;
(2)求曲线过坐标原点的切线与曲线的公共点的坐标.
22.(2021年全国新高考Ⅰ卷数学试题)已知函数.
(1)讨论的单调性;
(2)设,为两个不相等的正数,且,证明:.
参考答案:
1.(1);
(2)存在满足题意,理由见解析.
(3).
【分析】(1)由题意首先求得导函数的解析式,然后由导数的几何意义确定切线的斜率和切点坐标,最后求解切线方程即可;
(2)首先求得函数的定义域,由函数的定义域可确定实数的值,进一步结合函数的对称性利用特殊值法可得关于实数的方程,解方程可得实数的值,最后检验所得的是否正确即可;
(3)原问题等价于导函数有变号的零点,据此构造新函数,然后对函数求导,利用切线放缩研究导函数的性质,分类讨论,和三中情况即可求得实数的取值范围.
【详解】(1)当时,,
则,
据此可得,
函数在处的切线方程为,
即.
(2)由函数的解析式可得,
函数的定义域满足,即函数的定义域为,
定义域关于直线对称,由题意可得,
由对称性可知,
取可得,
即,则,解得,
经检验满足题意,故.
即存在满足题意.
(3)由函数的解析式可得,
由在区间存在极值点,则在区间上存在变号零点;
令,
则,
令,
在区间存在极值点,等价于在区间上存在变号零点,
当时,,在区间上单调递减,
此时,在区间上无零点,不合题意;
当,时,由于,所以在区间上单调递增,
所以,在区间上单调递增,,
所以在区间上无零点,不符合题意;
当时,由可得,
当时,,单调递减,
当时,,单调递增,
故的最小值为,
令,则,
函数在定义域内单调递增,,
据此可得恒成立,
则,
令,则,
当时,单调递增,
当时,单调递减,
故,即(取等条件为),
所以,
,且注意到,
根据零点存在性定理可知:在区间上存在唯一零点.
当时,,单调减,
当时,,单调递增,
所以.
令,则,
则函数在上单调递增,在上单调递减,
所以,所以,
所以
,
所以函数在区间上存在变号零点,符合题意.
综合上面可知:实数得取值范围是.
【点睛】(1)求切线方程的核心是利用导函数求切线的斜率,求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导,合函数求导,应由外到内逐层求导,必要时要进行换元.
(2)根据函数的极值(点)求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;②验证:求解后验证根的合理性.本题中第二问利用对称性求参数值之后也需要进行验证.
2.(1)答案见解析.
(2)
【分析】(1)求导,然后令,讨论导数的符号即可;
(2)构造,计算的最大值,然后与0比较大小,得出的分界点,再对讨论即可.
【详解】(1)
令,则
则
当
当,即.
当,即.
所以在上单调递增,在上单调递减
(2)设
设
所以.
若,
即在上单调递减,所以.
所以当,符合题意.
若
当,所以.
.
所以,使得,即,使得.
当,即当单调递增.
所以当,不合题意.
综上,的取值范围为.
【点睛】关键点点睛:本题采取了换元,注意复合函数的单调性在定义域内是减函数,若,当,对应当.
3.(1);
(2).
【分析】(1)由题意首先求得导函数的解析式,然后由导数的几何意义确定切线的斜率和切点坐标,最后求解切线方程即可;
(2)原问题即在区间上恒成立,整理变形可得在区间上恒成立,然后分类讨论三种情况即可求得实数的取值范围.
【详解】(1)当时,,
则,
据此可得,
所以函数在处的切线方程为,即.
(2)由函数的解析式可得,
满足题意时在区间上恒成立.
令,则,
令,原问题等价于在区间上恒成立,
则,
当时,由于,故,在区间上单调递减,
此时,不合题意;
令,则,
当,时,由于,所以在区间上单调递增,
即在区间上单调递增,
所以,在区间上单调递增,,满足题意.
当时,由可得,
当时,在区间上单调递减,即单调递减,
注意到,故当时,,单调递减,
由于,故当时,,不合题意.
综上可知:实数得取值范围是.
【点睛】方法点睛:
(1)求切线方程的核心是利用导函数求切线的斜率,求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导,合函数求导,应由外到内逐层求导,必要时要进行换元.
(2)由函数的单调性求参数的取值范围的方法
①函数在区间上单调,实际上就是在该区间上(或)恒成立.
②函数在区间上存在单调区间,实际上就是(或)在该区间上存在解集.
4.(1)在上单调递减
(2)
【分析】(1)代入后,再对求导,同时利用三角函数的平方关系化简,再利用换元法判断得其分子与分母的正负情况,从而得解;
(2)法一:构造函数,从而得到,注意到,从而得到,进而得到,再分类讨论与两种情况即可得解;
法二:先化简并判断得恒成立,再分类讨论,与三种情况,利用零点存在定理与隐零点的知识判断得时不满足题意,从而得解.
【详解】(1)因为,所以,
则
,
令,由于,所以,
所以,
因为,,,
所以在上恒成立,
所以在上单调递减.
(2)法一:
构建,
则,
若,且,
则,解得,
当时,因为,
又,所以,,则,
所以,满足题意;
当时,由于,显然,
所以,满足题意;
综上所述:若,等价于,
所以的取值范围为.
法二:
因为,
因为,所以,,
故在上恒成立,
所以当时,,满足题意;
当时,由于,显然,
所以,满足题意;
当时,因为,
令,则,
注意到,
若,,则在上单调递增,
注意到,所以,即,不满足题意;
若,,则,
所以在上最靠近处必存在零点,使得,
此时在上有,所以在上单调递增,
则在上有,即,不满足题意;
综上:.
【点睛】关键点睛:本题方法二第2小问讨论这种情况的关键是,注意到,从而分类讨论在上的正负情况,得到总存在靠近处的一个区间,使得,从而推得存在,由此得解.
5.(1)
(2)见解析
【分析】(1)设,根据题意列出方程,化简即可;
(2)法一:设矩形的三个顶点,且,分别令,,且,利用放缩法得,设函数,利用导数求出其最小值,则得的最小值,再排除边界值即可.
法二:设直线的方程为,将其与抛物线方程联立,再利用弦长公式和放缩法得,利用换元法和求导即可求出周长最值,再排除边界值即可.
法三:利用平移坐标系法,再设点,利用三角换元再对角度分类讨论,结合基本不等式即可证明.
【详解】(1)设,则,两边同平方化简得,
故.
(2)法一:设矩形的三个顶点在上,且,易知矩形四条边所在直线的斜率均存在,且不为0,
则,令,
同理令,且,则,
设矩形周长为,由对称性不妨设,,
则.,易知
则令,
令,解得,
当时,,此时单调递减,
当,,此时单调递增,
则,
故,即.
当时,,且,即时等号成立,矛盾,故,
得证.
法二:不妨设在上,且,
依题意可设,易知直线,的斜率均存在且不为0,
则设,的斜率分别为和,由对称性,不妨设,
直线的方程为,
则联立得,
,则
则,
同理,
令,则,设,
则,令,解得,
当时,,此时单调递减,
当,,此时单调递增,
则,
,
但,此处取等条件为,与最终取等时不一致,故.
法三:为了计算方便,我们将抛物线向下移动个单位得抛物线,
矩形变换为矩形,则问题等价于矩形的周长大于.
设 , 根据对称性不妨设 .
则 , 由于 , 则 .
由于 , 且 介于 之间,
则 . 令 ,
,则,从而
故
①当时,
②当 时,由于,从而,
从而又,
故,由此
,
当且仅当时等号成立,故,故矩形周长大于.
.
【点睛】关键点睛:本题的第二个的关键是通过放缩得,同时为了简便运算,对右边的式子平方后再设新函数求导,最后再排除边界值即可.
6.(1)答案见解析
(2)证明见解析
【分析】(1)先求导,再分类讨论与两种情况,结合导数与函数单调性的关系即可得解;
(2)方法一:结合(1)中结论,将问题转化为的恒成立问题,构造函数,利用导数证得即可.
方法二:构造函数,证得,从而得到,进而将问题转化为的恒成立问题,由此得证.
【详解】(1)因为,定义域为,所以,
当时,由于,则,故恒成立,
所以在上单调递减;
当时,令,解得,
当时,,则在上单调递减;
当时,,则在上单调递增;
综上:当时,在上单调递减;
当时,在上单调递减,在上单调递增.
(2)方法一:
由(1)得,,
要证,即证,即证恒成立,
令,则,
令,则;令,则;
所以在上单调递减,在上单调递增,
所以,则恒成立,
所以当时,恒成立,证毕.
方法二:
令,则,
由于在上单调递增,所以在上单调递增,
又,
所以当时,;当时,;
所以在上单调递减,在上单调递增,
故,则,当且仅当时,等号成立,
因为,
当且仅当,即时,等号成立,
所以要证,即证,即证,
令,则,
令,则;令,则;
所以在上单调递减,在上单调递增,
所以,则恒成立,
所以当时,恒成立,证毕.
7.(1)证明见详解(2)
【分析】(1)分别构建,,求导,利用导数判断原函数的单调性,进而可得结果;
(2)根据题意结合偶函数的性质可知只需要研究在上的单调性,求导,分类讨论和,结合(1)中的结论放缩,根据极大值的定义分析求解.
【详解】(1)构建,则对恒成立,
则在上单调递增,可得,
所以;
构建,
则,
构建,则对恒成立,
则在上单调递增,可得,
即对恒成立,
则在上单调递增,可得,
所以;
综上所述:.
(2)令,解得,即函数的定义域为,
若,则,
因为在定义域内单调递减,在上单调递增,在上单调递减,
则在上单调递减,在上单调递增,
故是的极小值点,不合题意,所以.
当时,令
因为,
且,
所以函数在定义域内为偶函数,
由题意可得:,
(i)当时,取,,则,
由(1)可得,
且,
所以,
即当时,,则在上单调递增,
结合偶函数的对称性可知:在上单调递减,
所以是的极小值点,不合题意;
(ⅱ)当时,取,则,
由(1)可得,
构建,
则,
且,则对恒成立,
可知在上单调递增,且,
所以在内存在唯一的零点,
当时,则,且,
则,
即当时,,则在上单调递减,
结合偶函数的对称性可知:在上单调递增,
所以是的极大值点,符合题意;
综上所述:,即,解得或,
故a的取值范围为.
【点睛】关键点睛:
1.当时,利用,换元放缩;
2.当时,利用,换元放缩.
8.(1)的减区间为,增区间为.
(2)
(3)见解析
【分析】(1)求出,讨论其符号后可得的单调性.
(2)设,求出,先讨论时题设中的不等式不成立,再就结合放缩法讨论符号,最后就结合放缩法讨论的范围后可得参数的取值范围.
(3)由(2)可得对任意的恒成立,从而可得对任意的恒成立,结合裂项相消法可证题设中的不等式.
【详解】(1)当时,,则,
当时,,当时,,
故的减区间为,增区间为.
(2)设,则,
又,设,
则,
若,则,
因为为连续不间断函数,
故存在,使得,总有,
故在为增函数,故,
故在为增函数,故,与题设矛盾.
若,则,
下证:对任意,总有成立,
证明:设,故,
故在上为减函数,故即成立.
由上述不等式有,
故总成立,即在上为减函数,
所以.
当时,有,
所以在上为减函数,所以.
综上,.
(3)取,则,总有成立,
令,则,
故即对任意的恒成立.
所以对任意的,有,
整理得到:,
故
,
故不等式成立.
【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.
9.(1)
(2)
【分析】(1)由导数确定函数的单调性,即可得解;
(2)求导得,按照、及结合导数讨论函数的单调性,求得函数的极值,即可得解.
【详解】(1)当时,,则,
当时,,单调递增;
当时,,单调递减;
所以;
(2),则,
当时,,所以当时,,单调递增;
当时,,单调递减;
所以,此时函数无零点,不合题意;
当时,,在上,,单调递增;
在上,,单调递减;
又,
由(1)得,即,所以,
当时,,
则存在,使得,
所以仅在有唯一零点,符合题意;
当时,,所以单调递增,又,
所以有唯一零点,符合题意;
当时,,在上,,单调递增;
在上,,单调递减;此时,
由(1)得当时,,,所以,
此时
存在,使得,
所以在有一个零点,在无零点,
所以有唯一零点,符合题意;
综上,a的取值范围为.
【点睛】关键点点睛:解决本题的关键是利用导数研究函数的极值与单调性,把函数零点问题转化为函数的单调性与极值的问题.
10.(1)3
(2)
【分析】(1)先由上的切点求出切线方程,设出上的切点坐标,由斜率求出切点坐标,再由函数值求出即可;
(2)设出上的切点坐标,分别由和及切点表示出切线方程,由切线重合表示出,构造函数,求导求出函数值域,即可求得的取值范围.
【详解】(1)由题意知,,,,则在点处的切线方程为,
即,设该切线与切于点,,则,解得,则,解得;
(2),则在点处的切线方程为,整理得,
设该切线与切于点,,则,则切线方程为,整理得,
则,整理得,
令,则,令,解得或,
令,解得或,则变化时,的变化情况如下表:
0
1
0
0
0
则的值域为,故的取值范围为.
11.(1)
(2)证明见的解析
【分析】(1)由导数确定函数单调性及最值,即可得解;
(2)利用分析法,转化要证明条件为,再利用导数即可得证.
【详解】(1)[方法一]:常规求导
的定义域为,则
令,得
当单调递减
当单调递增,
若,则,即
所以的取值范围为
[方法二]:同构处理
由得:
令,则即
令,则
故在区间上是增函数
故,即
所以的取值范围为
(2)[方法一]:构造函数
由题知,一个零点小于1,一个零点大于1,不妨设
要证,即证
因为,即证
又因为,故只需证
即证
即证
下面证明时,
设,
则
设
所以,而
所以,所以
所以在单调递增
即,所以
令
所以在单调递减
即,所以;
综上, ,所以.
[方法二]:对数平均不等式
由题意得:
令,则,
所以在上单调递增,故只有1个解
又因为有两个零点,故
两边取对数得:,即
又因为,故,即
下证
因为
不妨设,则只需证
构造,则
故在上单调递减
故,即得证
【点睛】关键点点睛 :本题是极值点偏移问题,关键点是通过分析法,构造函数证明不等式
这个函数经常出现,需要掌握
12.(1)
(2)
【分析】(1)先算出切点,再求导算出斜率即可
(2)求导,对分类讨论,对分两部分研究
【详解】(1)的定义域为
当时,,所以切点为,所以切线斜率为2
所以曲线在点处的切线方程为
(2)
设
若,当,即
所以在上单调递增,
故在上没有零点,不合题意
若,当,则
所以在上单调递增所以,即
所以在上单调递增,
故在上没有零点,不合题意
若
(1)当,则,所以在上单调递增
所以存在,使得,即
当单调递减
当单调递增
所以
当,
令则
所以在上单调递增,在上单调递减,所以,
又,,
所以在上有唯一零点
又没有零点,即在上有唯一零点
(2)当
设
所以在单调递增
所以存在,使得
当单调递减
当单调递增,
又
所以存在,使得,即
当单调递增,当单调递减,
当,,
又,
而,所以当
所以在上有唯一零点,上无零点
即在上有唯一零点
所以,符合题意
所以若在区间各恰有一个零点,求的取值范围为
【点睛】方法点睛:本题的关键是对的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.
13.(1)
(2)见解析
【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.
(2)根据(1)可得当时,的解的个数、的解的个数均为2,构建新函数,利用导数可得该函数只有一个零点且可得的大小关系,根据存在直线与曲线、有三个不同的交点可得的取值,再根据两类方程的根的关系可证明三根成等差数列.
【详解】(1)的定义域为,而,
若,则,此时无最小值,故.
的定义域为,而.
当时,,故在上为减函数,
当时,,故在上为增函数,
故.
当时,,故在上为减函数,
当时,,故在上为增函数,
故.
因为和有相同的最小值,
故,整理得到,其中,
设,则,
故为上的减函数,而,
故的唯一解为,故的解为.
综上,.
(2)[方法一]:
由(1)可得和的最小值为.
当时,考虑的解的个数、的解的个数.
设,,
当时,,当时,,
故在上为减函数,在上为增函数,
所以,
而,,
设,其中,则,
故在上为增函数,故,
故,故有两个不同的零点,即的解的个数为2.
设,,
当时,,当时,,
故在上为减函数,在上为增函数,
所以,
而,,
有两个不同的零点即的解的个数为2.
当,由(1)讨论可得、仅有一个解,
当时,由(1)讨论可得、均无根,
故若存在直线与曲线、有三个不同的交点,
则.
设,其中,故,
设,,则,
故在上为增函数,故即,
所以,所以在上为增函数,
而,,
故上有且只有一个零点,且:
当时,即即,
当时,即即,
因此若存在直线与曲线、有三个不同的交点,
故,
此时有两个不同的根,
此时有两个不同的根,
故,,,
所以即即,
故为方程的解,同理也为方程的解
又可化为即即,
故为方程的解,同理也为方程的解,
所以,而,
故即.
[方法二]:
由知,,,
且在上单调递减,在上单调递增;
在上单调递减,在上单调递增,且
①时,此时,显然与两条曲线和
共有0个交点,不符合题意;
②时,此时,
故与两条曲线和共有2个交点,交点的横坐标分别为0和1;
③时,首先,证明与曲线有2个交点,
即证明有2个零点,,
所以在上单调递减,在上单调递增,
又因为,,,
令,则,
所以在上存在且只存在1个零点,设为,在上存在且只存在1个零点,设为
其次,证明与曲线和有2个交点,
即证明有2个零点,,
所以上单调递减,在上单调递增,
又因为,,,
令,则,
所以在上存在且只存在1个零点,设为,在上存在且只存在1个零点,设为
再次,证明存在b,使得
因为,所以,
若,则,即,
所以只需证明在上有解即可,
即在上有零点,
因为,,
所以在上存在零点,取一零点为,令即可,
此时取
则此时存在直线,其与两条曲线和共有三个不同的交点,
最后证明,即从左到右的三个交点的横坐标成等差数列,
因为
所以,
又因为在上单调递减,,即,所以,
同理,因为,
又因为在上单调递增,即,,所以,
又因为,所以,
即直线与两条曲线和从左到右的三个交点的横坐标成等差数列.
【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.
14.(1)答案见解析;(2)证明见解析.
【分析】(1)首先求得导函数的解析式,然后分类讨论确定函数的单调性即可;
(2)由题意结合(1)中函数的单调性和函数零点存在定理即可证得题中的结论.
【详解】(1)由函数的解析式可得:,
当时,若,则单调递减,
若,则单调递增;
当时,若,则单调递增,
若,则单调递减,
若,则单调递增;
当时,在上单调递增;
当时,若,则单调递增,
若,则单调递减,
若,则单调递增;
(2)若选择条件①:
由于,故,则,
而,
而函数在区间上单调递增,故函数在区间上有一个零点.
,
由于,,故,
结合函数的单调性可知函数在区间上没有零点.
综上可得,题中的结论成立.
若选择条件②:
由于,故,则,
当时,,,
而函数在区间上单调递增,故函数在区间上有一个零点.
当时,构造函数,则,
当时,单调递减,
当时,单调递增,
注意到,故恒成立,从而有:,此时:
,
当时,,
取,则,
即:,
而函数在区间上单调递增,故函数在区间上有一个零点.
,
由于,,故,
结合函数的单调性可知函数在区间上没有零点.
综上可得,题中的结论成立.
【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.
15.(1)1;(2)见解析;(3)见解析.
【分析】(1)利用公式计算可得.
(2)利用导数讨论函数的单调性,结合及极值点的范围可得的最小正零点.
(3)利用期望的意义及根的范围可得相应的理解说明.
【详解】(1).
(2)设,
因为,故,
若,则,故.
,
因为,,
故有两个不同零点,且,
且时,;时,;
故在,上为增函数,在上为减函数,
若,因为在为增函数且,
而当时,因为在上为减函数,故,
故为的一个最小正实根,
若,因为且在上为减函数,故1为的一个最小正实根,
综上,若,则.
若,则,故.
此时,,
故有两个不同零点,且,
且时,;时,;
故在,上为增函数,在上为减函数,
而,故,
又,故在存在一个零点,且.
所以为的一个最小正实根,此时,
故当时,.
(3)意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝,若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1.
16.(1);(2).
【分析】(1)根据圆的几何性质可得出关于的等式,即可解出的值;
(2)设点、、,利用导数求出直线、,进一步可求得直线的方程,将直线的方程与抛物线的方程联立,求出以及点到直线的距离,利用三角形的面积公式结合二次函数的基本性质可求得面积的最大值.
【详解】(1)[方法一]:利用二次函数性质求最小值
由题意知,,设圆M上的点,则.
所以.
从而有.
因为,所以当时,.
又,解之得,因此.
[方法二]【最优解】:利用圆的几何意义求最小值
抛物线的焦点为,,
所以,与圆上点的距离的最小值为,解得;
(2)[方法一]:切点弦方程+韦达定义判别式求弦长求面积法
抛物线的方程为,即,对该函数求导得,
设点、、,
直线的方程为,即,即,
同理可知,直线的方程为,
由于点为这两条直线的公共点,则,
所以,点A、的坐标满足方程,
所以,直线的方程为,
联立,可得,
由韦达定理可得,,
所以,,
点到直线的距离为,
所以,,
,
由已知可得,所以,当时,的面积取最大值.
[方法二]【最优解】:切点弦法+分割转化求面积+三角换元求最值
同方法一得到.
过P作y轴的平行线交于Q,则.
.
P点在圆M上,则
.
故当时的面积最大,最大值为.
[方法三]:直接设直线AB方程法
设切点A,B的坐标分别为,.
设,联立和抛物线C的方程得整理得.
判别式,即,且.
抛物线C的方程为,即,有.
则,整理得,同理可得.
联立方程可得点P的坐标为,即.
将点P的坐标代入圆M的方程,得,整理得.
由弦长公式得.
点P到直线的距离为.
所以,
其中,即.
当时,.
【整体点评】(1)方法一利用两点间距离公式求得关于圆M上的点的坐标的表达式,进一步转化为关于的表达式,利用二次函数的性质得到最小值,进而求得的值;方法二,利用圆的性质,与圆上点的距离的最小值,简洁明快,为最优解;(2)方法一设点、、,利用导数求得两切线方程,由切点弦方程思想得到直线的坐标满足方程,然手与抛物线方程联立,由韦达定理可得,,利用弦长公式求得的长,进而得到面积关于坐标的表达式,利用圆的方程转化得到关于的二次函数最值问题;方法二,同方法一得到,,过P作y轴的平行线交于Q,则.由求得面积关于坐标的表达式,并利用三角函数换元求得面积最大值,方法灵活,计算简洁,为最优解;方法三直接设直线,联立直线和抛物线方程,利用韦达定理判别式得到,且.利用点在圆上,求得的关系,然后利用导数求得两切线方程,解方程组求得P的坐标,进而利用弦长公式和点到直线距离公式求得面积关于的函数表达式,然后利用二次函数的性质求得最大值;
17.(1);(2)证明见详解
【分析】(1)由题意求出,由极值点处导数为0即可求解出参数;
(2)由(1)得,且,分类讨论和,可等价转化为要证,即证在和上恒成立,结合导数和换元法即可求解
【详解】(1)由,,
又是函数的极值点,所以,解得;
(2)[方法一]:转化为有分母的函数
由(Ⅰ)知,,其定义域为.
要证,即证,即证.
(ⅰ)当时,,,即证.令,因为,所以在区间内为增函数,所以.
(ⅱ)当时,,,即证,由(ⅰ)分析知在区间内为减函数,所以.
综合(ⅰ)(ⅱ)有.
[方法二] 【最优解】:转化为无分母函数
由(1)得,,且,
当 时,要证,, ,即证,化简得;
同理,当时,要证,, ,即证,化简得;
令,再令,则,,
令,,
当时,,单减,故;
当时,,单增,故;
综上所述,在恒成立.
[方法三] :利用导数不等式中的常见结论证明
令,因为,所以在区间内是增函数,在区间内是减函数,所以,即(当且仅当时取等号).故当且时,且,,即,所以.
(ⅰ)当时,,所以,即,所以.
(ⅱ)当时,,同理可证得.
综合(ⅰ)(ⅱ)得,当且时,,即.
【整体点评】(2)方法一利用不等式的性质分类转化分式不等式:当时,转化为证明,当时,转化为证明,然后构造函数,利用导数研究单调性,进而证得;方法二利用不等式的性质分类讨论分别转化为整式不等式:当时,成立和当时,成立,然后换元构造,利用导数研究单调性进而证得,通性通法,运算简洁,为最优解;方法三先构造函数,利用导数分析单调性,证得常见常用结论(当且仅当时取等号).然后换元得到,分类讨论,利用不等式的基本性质证得要证得不等式,有一定的巧合性.
18.(1)的减区间为,增区间为;(2).
【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.
(2)根据及(1)的单调性性可得,从而可求a的取值范围.
【详解】(1)函数的定义域为,
又,
因为,故,
当时,;当时,;
所以的减区间为,增区间为.
(2)因为且的图与轴没有公共点,
所以的图象在轴的上方,
由(1)中函数的单调性可得,
故即.
【点睛】方法点睛:不等式的恒成立问题,往往可转化为函数的最值的符号来讨论,也可以参变分离后转化不含参数的函数的最值问题,转化中注意等价转化.
19.(1)图像见解析;(2)
【分析】(1)分段去绝对值即可画出图像;
(2)根据函数图像数形结和可得需将向左平移可满足同角,求得过时的值可求.
【详解】(1)可得,画出图像如下:
,画出函数图像如下:
(2),
如图,在同一个坐标系里画出图像,
是平移了个单位得到,
则要使,需将向左平移,即,
当过时,,解得或(舍去),
则数形结合可得需至少将向左平移个单位,.
【点睛】关键点睛:本题考查绝对值不等式的恒成立问题,解题的关键是根据函数图像数形结合求解.
20.(1)上单调递增;上单调递减;(2).
【分析】(1)求得函数的导函数,利用导函数的正负与函数的单调性的关系即可得到函数的单调性;
(2)方法一:利用指数对数的运算法则,可以将曲线与直线有且仅有两个交点等价转化为方程有两个不同的实数根,即曲线与直线有两个交点,利用导函数研究的单调性,并结合的正负,零点和极限值分析的图象,进而得到,发现这正好是,然后根据的图象和单调性得到的取值范围.
【详解】(1)当时,,
令得,当时,,当时,,
∴函数在上单调递增;上单调递减;
(2)[方法一]【最优解】:分离参数
,设函数,
则,令,得,
在内,单调递增;
在上,单调递减;
,
又,当趋近于时,趋近于0,
所以曲线与直线有且仅有两个交点,即曲线与直线有两个交点的充分必要条件是,这即是,
所以的取值范围是.
[方法二]:构造差函数
由与直线有且仅有两个交点知,即在区间内有两个解,取对数得方程在区间内有两个解.
构造函数,求导数得.
当时,在区间内单调递增,所以,在内最多只有一个零点,不符合题意;
当时,,令得,当时,;当时,;所以,函数的递增区间为,递减区间为.
由于,
当时,有,即,由函数在内有两个零点知,所以,即.
构造函数,则,所以的递减区间为,递增区间为,所以,当且仅当时取等号,故的解为且.
所以,实数a的取值范围为.
[方法三]分离法:一曲一直
曲线与有且仅有两个交点等价为在区间内有两个不相同的解.
因为,所以两边取对数得,即,问题等价为与有且仅有两个交点.
①当时,与只有一个交点,不符合题意.
②当时,取上一点在点的切线方程为,即.
当与为同一直线时有得
直线的斜率满足:时,与有且仅有两个交点.
记,令,有.在区间内单调递增;在区间内单调递减;时,最大值为,所当且时有.
综上所述,实数a的取值范围为.
[方法四]:直接法
.
因为,由得.
当时,在区间内单调递减,不满足题意;
当时,,由得在区间内单调递增,由得在区间内单调递减.
因为,且,所以,即,即,两边取对数,得,即.
令,则,令,则,所以在区间内单调递增,在区间内单调递减,所以,所以,则的解为,所以,即.
故实数a的范围为.]
【整体点评】本题考查利用导数研究函数的单调性,根据曲线和直线的交点个数求参数的取值范围问题,属较难试题,
方法一:将问题进行等价转化,分离参数,构造函数,利用导数研究函数的单调性和最值,图象,利用数形结合思想求解.
方法二:将问题取对,构造差函数,利用导数研究函数的单调性和最值.
方法三:将问题取对,分成与两个函数,研究对数函数过原点的切线问题,将切线斜率与一次函数的斜率比较得到结论.
方法四:直接求导研究极值,单调性,最值,得到结论.
21.(1)答案见解析;(2) 和.
【分析】(1)首先求得导函数的解析式,然后分类讨论导函数的符号即可确定原函数的单调性;
(2)首先求得导数过坐标原点的切线方程,然后将原问题转化为方程求解的问题,据此即可求得公共点坐标.
【详解】(1)由函数的解析式可得:,
导函数的判别式,
当时,在R上单调递增,
当时,的解为:,
当时,单调递增;
当时,单调递减;
当时,单调递增;
综上可得:当时,在R上单调递增,
当时,在,上
单调递增,在上单调递减.
(2)由题意可得:,,
则切线方程为:,
切线过坐标原点,则:,
整理可得:,即:,
解得:,则,
切线方程为:,
与联立得,
化简得,由于切点的横坐标1必然是该方程的一个根,是的一个因式,∴该方程可以分解因式为
解得,
,
综上,曲线过坐标原点的切线与曲线的公共点的坐标为和.
【点睛】本题考查利用导数研究含有参数的函数的单调性问题,和过曲线外一点所做曲线的切线问题,注意单调性研究中对导函数,要依据其零点的不同情况进行分类讨论;再求切线与函数曲线的公共点坐标时,要注意除了已经求出的切点,还可能有另外的公共点(交点),要通过联立方程求解,其中得到三次方程求解时要注意其中有一个实数根是求出的切点的横坐标,这样就容易通过分解因式求另一个根.三次方程时高考压轴题中的常见问题,不必恐惧,一般都能容易找到其中一个根,然后在通过分解因式的方法求其余的根.
22.(1)的递增区间为,递减区间为;(2)证明见解析.
【分析】(1) 首先确定函数的定义域,然后求得导函数的解析式,由导函数的符号即可确定原函数的单调性.
(2)方法二:将题中的等式进行恒等变换,令,命题转换为证明:,然后构造对称差函数,结合函数零点的特征和函数的单调性即可证得题中的结论.
【详解】(1)的定义域为.
由得,,
当时,;当时;当时,.
故在区间内为增函数,在区间内为减函数,
(2)[方法一]:等价转化
由得,即.
由,得.
由(1)不妨设,则,从而,得,
①令,
则,
当时,,在区间内为减函数,,
从而,所以,
由(1)得即.①
令,则,
当时,,在区间内为增函数,,
从而,所以.
又由,可得,
所以.②
由①②得.
[方法二]【最优解】:变形为,所以.
令.则上式变为,
于是命题转换为证明:.
令,则有,不妨设.
由(1)知,先证.
要证:
.
令,
则,
在区间内单调递增,所以,即.
再证.
因为,所以需证.
令,
所以,故在区间内单调递增.
所以.故,即.
综合可知.
[方法三]:比值代换
证明同证法2.以下证明.
不妨设,则,
由得,,
要证,只需证,两边取对数得,
即,
即证.
记,则.
记,则,
所以,在区间内单调递减.,则,
所以在区间内单调递减.
由得,所以,
即.
[方法四]:构造函数法
由已知得,令,
不妨设,所以.
由(Ⅰ)知,,只需证.
证明同证法2.
再证明.令.
令,则.
所以,在区间内单调递增.
因为,所以,即
又因为,所以,
即.
因为,所以,即.
综上,有结论得证.
【整体点评】(2)方法一:等价转化是处理导数问题的常见方法,其中利用的对称差函数,构造函数的思想,这些都是导数问题必备的知识和技能.
方法二:等价转化是常见的数学思想,构造对称差函数是最基本的极值点偏移问题的处理策略.
方法三:比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.
方法四:构造函数之后想办法出现关于的式子,这是本方法证明不等式的关键思想所在.
高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-数列(解答: 这是一份高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-数列(解答,共37页。试卷主要包含了解答题等内容,欢迎下载使用。
高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-数列(选择: 这是一份高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-数列(选择,共27页。试卷主要包含了单选题,多选题,填空题,双空题等内容,欢迎下载使用。
高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-空间向量与 (2): 这是一份高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-空间向量与 (2),共44页。试卷主要包含了解答题等内容,欢迎下载使用。