|试卷下载
终身会员
搜索
    上传资料 赚现金
    高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-空间向量与
    立即下载
    加入资料篮
    高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-空间向量与01
    高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-空间向量与02
    高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-空间向量与03
    还剩17页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-空间向量与

    展开
    这是一份高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-空间向量与,共20页。试卷主要包含了单选题等内容,欢迎下载使用。

    一、单选题
    1.(2021·全国·统考高考真题)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )
    A.B.C.D.
    2.(2021·全国·统考高考真题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为的球,其上点A的纬度是指与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为,记卫星信号覆盖地球表面的表面积为(单位:),则S占地球表面积的百分比约为( )
    A.26%B.34%C.42%D.50%
    3.(2021·全国·统考高考真题)已知A,B,C是半径为1的球O的球面上的三个点,且,则三棱锥的体积为( )
    A.B.C.D.
    4.(2021·全国·高考真题)在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是( )
    A.B.C.D.
    5.(2021·全国·统考高考真题)在正方体中,P为的中点,则直线与所成的角为( )
    A.B.C.D.
    6.(2021·全国·统考高考真题)已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为( )
    A.B.C.D.
    7.(2022·全国·统考高考真题)已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为( )
    A.B.C.D.
    8.(2022·全国·统考高考真题)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和.若,则( )
    A.B.C.D.
    9.(2022·全国·统考高考真题)在长方体中,已知与平面和平面所成的角均为,则( )
    A.B.AB与平面所成的角为
    C.D.与平面所成的角为
    10.(2022·全国·统考高考真题)如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )
    A.8B.12C.16D.20
    11.(2022·全国·统考高考真题)已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为( )
    A.B.C.D.
    12.(2022·全国·统考高考真题)在正方体中,E,F分别为的中点,则( )
    A.平面平面B.平面平面
    C.平面平面D.平面平面
    13.(2022·全国·统考高考真题)已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是( )
    A.B.C.D.
    14.(2022·全国·统考高考真题)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()( )
    A.B.C.D.
    15.(2023·全国·统考高考真题)如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )

    A.24B.26C.28D.30
    16.(2023·全国·统考高考真题)已知四棱锥的底面是边长为4的正方形,,则的面积为( )
    A.B.C.D.
    17.(2023·全国·统考高考真题)已知圆锥PO的底面半径为,O为底面圆心,PA,PB为圆锥的母线,,若的面积等于,则该圆锥的体积为( )
    A.B.C.D.
    18.(2023·全国·统考高考真题)在三棱锥中,是边长为2的等边三角形,,则该棱锥的体积为( )
    A.1B.C.2D.3
    19.(2023·全国·统考高考真题)已知为等腰直角三角形,AB为斜边,为等边三角形,若二面角为,则直线CD与平面ABC所成角的正切值为( )
    A.B.C.D.
    参考答案:
    1.D
    【分析】由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解.
    【详解】作出图形,连接该正四棱台上下底面的中心,如图,
    因为该四棱台上下底面边长分别为2,4,侧棱长为2,
    所以该棱台的高,
    下底面面积,上底面面积,
    所以该棱台的体积.
    故选:D.
    2.C
    【分析】由题意结合所给的表面积公式和球的表面积公式整理计算即可求得最终结果.
    【详解】由题意可得,S占地球表面积的百分比约为:
    .
    故选:C.
    3.A
    【分析】由题可得为等腰直角三角形,得出外接圆的半径,则可求得到平面的距离,进而求得体积.
    【详解】,为等腰直角三角形,,
    则外接圆的半径为,又球的半径为1,
    设到平面的距离为,
    则,
    所以.
    故选:A.
    【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.
    4.D
    【分析】根据题意及题目所给的正视图还原出几何体的直观图,结合直观图进行判断.
    【详解】由题意及正视图可得几何体的直观图,如图所示,
    所以其侧视图为
    故选:D
    5.D
    【分析】平移直线至,将直线与所成的角转化为与所成的角,解三角形即可.
    【详解】
    如图,连接,因为∥,
    所以或其补角为直线与所成的角,
    因为平面,所以,又,,
    所以平面,所以,
    设正方体棱长为2,则,
    ,所以.
    故选:D
    6.B
    【分析】设圆锥的母线长为,根据圆锥底面圆的周长等于扇形的弧长可求得的值,即为所求.
    【详解】设圆锥的母线长为,由于圆锥底面圆的周长等于扇形的弧长,则,解得.
    故选:B.
    7.A
    【分析】根据题意可求出正三棱台上下底面所在圆面的半径,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.
    【详解】设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,,故或,即或,解得符合题意,所以球的表面积为.
    故选:A.
    8.C
    【分析】设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,根据圆锥的侧面积公式可得,再结合圆心角之和可将分别用表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.
    【详解】解:设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,
    则,
    所以,
    又,
    则,
    所以,
    所以甲圆锥的高,
    乙圆锥的高,
    所以.
    故选:C.
    9.D
    【分析】根据线面角的定义以及长方体的结构特征即可求出.
    【详解】如图所示:
    不妨设,依题以及长方体的结构特征可知,与平面所成角为,与平面所成角为,所以,即,,解得.
    对于A,,,,A错误;
    对于B,过作于,易知平面,所以与平面所成角为,因为,所以,B错误;
    对于C,,,,C错误;
    对于D,与平面所成角为,,而,所以.D正确.
    故选:D.
    10.B
    【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.
    【详解】由三视图还原几何体,如图,
    则该直四棱柱的体积.
    故选:B.
    11.C
    【分析】方法一:先证明当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.
    【详解】[方法一]:【最优解】基本不等式
    设该四棱锥底面为四边形ABCD,四边形ABCD所在小圆半径为r,
    设四边形ABCD对角线夹角为,

    (当且仅当四边形ABCD为正方形时等号成立)
    即当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为
    又设四棱锥的高为,则,
    当且仅当即时等号成立.
    故选:C
    [方法二]:统一变量+基本不等式
    由题意可知,当四棱锥为正四棱锥时,其体积最大,设底面边长为,底面所在圆的半径为,则,所以该四棱锥的高,

    (当且仅当,即时,等号成立)
    所以该四棱锥的体积最大时,其高.
    故选:C.
    [方法三]:利用导数求最值
    由题意可知,当四棱锥为正四棱锥时,其体积最大,设底面边长为,底面所在圆的半径为,则,所以该四棱锥的高,,令,,设,则,
    ,,单调递增, ,,单调递减,
    所以当时,最大,此时.
    故选:C.
    【点评】方法一:思维严谨,利用基本不等式求最值,模型熟悉,是该题的最优解;
    方法二:消元,实现变量统一,再利用基本不等式求最值;
    方法三:消元,实现变量统一,利用导数求最值,是最值问题的常用解法,操作简便,是通性通法.
    12.A
    【分析】证明平面,即可判断A;如图,以点为原点,建立空间直角坐标系,设,分别求出平面,,的法向量,根据法向量的位置关系,即可判断BCD.
    【详解】解:在正方体中,
    且平面,
    又平面,所以,
    因为分别为的中点,
    所以,所以,
    又,
    所以平面,
    又平面,
    所以平面平面,故A正确;
    选项BCD解法一:
    如图,以点为原点,建立空间直角坐标系,设,
    则,

    则,,
    设平面的法向量为,
    则有,可取,
    同理可得平面的法向量为,
    平面的法向量为,
    平面的法向量为,
    则,
    所以平面与平面不垂直,故B错误;
    因为与不平行,
    所以平面与平面不平行,故C错误;
    因为与不平行,
    所以平面与平面不平行,故D错误,
    故选:A.
    选项BCD解法二:
    解:对于选项B,如图所示,设,,则为平面与平面的交线,
    在内,作于点,在内,作,交于点,连结,
    则或其补角为平面与平面所成二面角的平面角,
    由勾股定理可知:,,
    底面正方形中,为中点,则,
    由勾股定理可得,
    从而有:,
    据此可得,即,
    据此可得平面平面不成立,选项B错误;
    对于选项C,取的中点,则,
    由于与平面相交,故平面平面不成立,选项C错误;
    对于选项D,取的中点,很明显四边形为平行四边形,则,
    由于与平面相交,故平面平面不成立,选项D错误;
    故选:A.
    13.C
    【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.
    【详解】∵球的体积为,所以球的半径,
    [方法一]:导数法
    设正四棱锥的底面边长为,高为,
    则,,
    所以,
    所以正四棱锥的体积,
    所以,
    当时,,当时,,
    所以当时,正四棱锥的体积取最大值,最大值为,
    又时,,时,,
    所以正四棱锥的体积的最小值为,
    所以该正四棱锥体积的取值范围是.
    故选:C.
    [方法二]:基本不等式法
    由方法一故所以当且仅当取到,
    当时,得,则
    当时,球心在正四棱锥高线上,此时,
    ,正四棱锥体积,故该正四棱锥体积的取值范围是
    14.C
    【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.
    【详解】依题意可知棱台的高为(m),所以增加的水量即为棱台的体积.
    棱台上底面积,下底面积,


    故选:C.
    15.D
    【分析】由题意首先由三视图还原空间几何体,然后由所得的空间几何体的结构特征求解其表面积即可.
    【详解】如图所示,在长方体中,,,
    点为所在棱上靠近点的三等分点,为所在棱的中点,
    则三视图所对应的几何体为长方体去掉长方体之后所得的几何体,

    该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形,
    其表面积为:.
    故选:D.
    16.C
    【分析】法一:利用全等三角形的证明方法依次证得,,从而得到,再在中利用余弦定理求得,从而求得,由此在中利用余弦定理与三角形面积公式即可得解;
    法二:先在中利用余弦定理求得,,从而求得,再利用空间向量的数量积运算与余弦定理得到关于的方程组,从而求得,由此在中利用余弦定理与三角形面积公式即可得解.
    【详解】法一:
    连结交于,连结,则为的中点,如图,
    因为底面为正方形,,所以,则,
    又,,所以,则,
    又,,所以,则,
    在中,,
    则由余弦定理可得,
    故,则,
    故在中,,
    所以,
    又,所以,
    所以的面积为.
    法二:
    连结交于,连结,则为的中点,如图,
    因为底面为正方形,,所以,
    在中,,
    则由余弦定理可得,故,
    所以,则,
    不妨记,
    因为,所以,
    即,
    则,整理得①,
    又在中,,即,则②,
    两式相加得,故,
    故在中,,
    所以,
    又,所以,
    所以的面积为.
    故选:C.
    17.B
    【分析】根据给定条件,利用三角形面积公式求出圆锥的母线长,进而求出圆锥的高,求出体积作答.
    【详解】在中,,而,取中点,连接,有,如图,
    ,,由的面积为,得,
    解得,于是,
    所以圆锥的体积.
    故选:B
    18.A
    【分析】证明平面,分割三棱锥为共底面两个小三棱锥,其高之和为AB得解.
    【详解】取中点,连接,如图,

    是边长为2的等边三角形,,
    ,又平面,,
    平面,
    又,,
    故,即,
    所以,
    故选:A
    19.C
    【分析】根据给定条件,推导确定线面角,再利用余弦定理、正弦定理求解作答.
    【详解】取的中点,连接,因为是等腰直角三角形,且为斜边,则有,
    又是等边三角形,则,从而为二面角的平面角,即,

    显然平面,于是平面,又平面,
    因此平面平面,显然平面平面,
    直线平面,则直线在平面内的射影为直线,
    从而为直线与平面所成的角,令,则,在中,由余弦定理得:

    由正弦定理得,即,
    显然是锐角,,
    所以直线与平面所成的角的正切为.
    故选:C
    相关试卷

    高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-数列(解答: 这是一份高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-数列(解答,共37页。试卷主要包含了解答题等内容,欢迎下载使用。

    高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-数列(选择: 这是一份高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-数列(选择,共27页。试卷主要包含了单选题,多选题,填空题,双空题等内容,欢迎下载使用。

    高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-空间向量与 (2): 这是一份高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-空间向量与 (2),共44页。试卷主要包含了解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-空间向量与
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map