高考数学全国新课标II卷3年(2021-2023)真题汇编-单选题
展开高考数学全国新课标II卷3年(2021-2023)真题汇编-单选题
一、单选题
1.复数在复平面内对应的点所在的象限为( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.设集合,则( )
A. B. C. D.
3.抛物线的焦点到直线的距离为,则( )
A.1 B.2 C. D.4
4.北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为的球,其上点A的纬度是指与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为,记卫星信号覆盖地球表面的表面积为(单位:),则S占地球表面积的百分比约为( )
A.26% B.34% C.42% D.50%
5.正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )
A. B. C. D.
6.某物理量的测量结果服从正态分布,下列结论中不正确的是( )
A.越小,该物理量在一次测量中在的概率越大
B.该物理量在一次测量中大于10的概率为0.5
C.该物理量在一次测量中小于9.99与大于10.01的概率相等
D.该物理量在一次测量中落在与落在的概率相等
7.已知,,,则下列判断正确的是( )
A. B. C. D.
8.已知函数的定义域为,为偶函数,为奇函数,则( )
A. B. C. D.
9.已知集合,则( )
A. B. C. D.
10.( )
A. B. C. D.
11.图1是中国古代建筑中的举架结构,是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中是举,是相等的步,相邻桁的举步之比分别为.已知成公差为0.1的等差数列,且直线的斜率为0.725,则( )
A.0.75 B.0.8 C.0.85 D.0.9
12.已知向量,若,则( )
A. B. C.5 D.6
13.有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( )
A.12种 B.24种 C.36种 D.48种
14.若,则( )
A. B.
C. D.
15.已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为( )
A. B. C. D.
16.已知函数的定义域为R,且,则( )
A. B. C.0 D.1
17.在复平面内,对应的点位于( ).
A.第一象限 B.第二象限 C.第三象限 D.第四象限
18.设集合,,若,则( ).
A.2 B.1 C. D.
19.某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ).
A.种 B.种
C.种 D.种
20.若为偶函数,则( ).
A. B.0 C. D.1
21.已知椭圆的左、右焦点分别为,,直线与C交于A,B两点,若面积是面积的2倍,则( ).
A. B. C. D.
22.已知函数在区间上单调递增,则a的最小值为( ).
A. B.e C. D.
23.已知为锐角,,则( ).
A. B. C. D.
24.记为等比数列的前n项和,若,,则( ).
A.120 B.85 C. D.
参考答案:
1.A
【分析】利用复数的除法可化简,从而可求对应的点的位置.
【详解】,所以该复数对应的点为,
该点在第一象限,
故选:A.
2.B
【分析】根据交集、补集的定义可求.
【详解】由题设可得,故,
故选:B.
3.B
【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得的值.
【详解】抛物线的焦点坐标为,
其到直线的距离:,
解得:(舍去).
故选:B.
4.C
【分析】由题意结合所给的表面积公式和球的表面积公式整理计算即可求得最终结果.
【详解】由题意可得,S占地球表面积的百分比约为:
.
故选:C.
5.D
【分析】由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解.
【详解】作出图形,连接该正四棱台上下底面的中心,如图,
因为该四棱台上下底面边长分别为2,4,侧棱长为2,
所以该棱台的高,
下底面面积,上底面面积,
所以该棱台的体积.
故选:D.
6.D
【分析】由正态分布密度曲线的特征逐项判断即可得解.
【详解】对于A,为数据的方差,所以越小,数据在附近越集中,所以测量结果落在内的概率越大,故A正确;
对于B,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为,故B正确;
对于C,由正态分布密度曲线的对称性可知该物理量一次测量结果大于的概率与小于的概率相等,故C正确;
对于D,因为该物理量一次测量结果落在的概率与落在的概率不同,所以一次测量结果落在的概率与落在的概率不同,故D错误.
故选:D.
7.C
【分析】对数函数的单调性可比较、与的大小关系,由此可得出结论.
【详解】,即.
故选:C.
8.B
【分析】推导出函数是以为周期的周期函数,由已知条件得出,结合已知条件可得出结论.
【详解】因为函数为偶函数,则,可得,
因为函数为奇函数,则,所以,,
所以,,即,
故函数是以为周期的周期函数,
因为函数为奇函数,则,
故,其它三个选项未知.
故选:B.
9.B
【分析】方法一:求出集合后可求.
【详解】[方法一]:直接法
因为,故,故选:B.
[方法二]:【最优解】代入排除法
代入集合,可得,不满足,排除A、D;
代入集合,可得,不满足,排除C.
故选:B.
【整体点评】方法一:直接解不等式,利用交集运算求出,是通性通法;
方法二:根据选择题特征,利用特殊值代入验证,是该题的最优解.
10.D
【分析】利用复数的乘法可求.
【详解】,
故选:D.
11.D
【分析】设,则可得关于的方程,求出其解后可得正确的选项.
【详解】设,则,
依题意,有,且,
所以,故,
故选:D
12.C
【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得
【详解】解:,,即,解得,
故选:C
13.B
【分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解
【详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:种不同的排列方式,
故选:B
14.C
【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解.
【详解】[方法一]:直接法
由已知得:,
即:,
即:
所以
故选:C
[方法二]:特殊值排除法
解法一:设β=0则sinα +cosα =0,取,排除A, B;
再取α=0则sinβ +cosβ= 2sinβ,取β,排除D;选C.
[方法三]:三角恒等变换
所以
即
故选:C.
15.A
【分析】根据题意可求出正三棱台上下底面所在圆面的半径,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.
【详解】设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,,故或,即或,解得符合题意,所以球的表面积为.
故选:A.
16.A
【分析】法一:根据题意赋值即可知函数的一个周期为,求出函数一个周期中的的值,即可解出.
【详解】[方法一]:赋值加性质
因为,令可得,,所以,令可得,,即,所以函数为偶函数,令得,,即有,从而可知,,故,即,所以函数的一个周期为.因为,,,,,所以
一个周期内的.由于22除以6余4,
所以.故选:A.
[方法二]:【最优解】构造特殊函数
由,联想到余弦函数和差化积公式
,可设,则由方法一中知,解得,取,
所以,则
,所以符合条件,因此的周期,,且,所以,
由于22除以6余4,
所以.故选:A.
【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法;
法二:作为选择题,利用熟悉的函数使抽象问题具体化,简化推理过程,直接使用具体函数的性质解题,简单明了,是该题的最优解.
17.A
【分析】根据复数的乘法结合复数的几何意义分析判断.
【详解】因为,
则所求复数对应的点为,位于第一象限.
故选:A.
18.B
【分析】根据包含关系分和两种情况讨论,运算求解即可.
【详解】因为,则有:
若,解得,此时,,不符合题意;
若,解得,此时,,符合题意;
综上所述:.
故选:B.
19.D
【分析】利用分层抽样的原理和组合公式即可得到答案.
【详解】根据分层抽样的定义知初中部共抽取人,高中部共抽取,
根据组合公式和分步计数原理则不同的抽样结果共有种.
故选:D.
20.B
【分析】根据偶函数性质,利用特殊值法求出值,再检验即可.
【详解】因为 为偶函数,则 ,解得,
当时,,,解得或,
则其定义域为或,关于原点对称.
,
故此时为偶函数.
故选:B.
21.C
【分析】首先联立直线方程与椭圆方程,利用,求出范围,再根据三角形面积比得到关于的方程,解出即可.
【详解】将直线与椭圆联立,消去可得,
因为直线与椭圆相交于点,则,解得,
设到的距离到距离,易知,
则,,
,解得或(舍去),
故选:C.
22.C
【分析】根据在上恒成立,再根据分参求最值即可求出.
【详解】依题可知,在上恒成立,显然,所以,
设,所以,所以在上单调递增,
,故,即,即a的最小值为.
故选:C.
23.D
【分析】根据二倍角公式(或者半角公式)即可求出.
【详解】因为,而为锐角,
解得:.
故选:D.
24.C
【分析】方法一:根据等比数列的前n项和公式求出公比,再根据的关系即可解出;
方法二:根据等比数列的前n项和的性质求解.
【详解】方法一:设等比数列的公比为,首项为,
若,则,与题意不符,所以;
若,则,与题意不符,所以;
由,可得,,①,
由①可得,,解得:,
所以.
故选:C.
方法二:设等比数列的公比为,
因为,,所以,否则,
从而,成等比数列,
所以有,,解得:或,
当时,,即为,
易知,,即;
当时,,
与矛盾,舍去.
故选:C.
【点睛】本题主要考查等比数列的前n项和公式的应用,以及整体思想的应用,解题关键是把握的关系,从而减少相关量的求解,简化运算.
高考数学全国新课标I卷3年(2021-2023)真题汇编-单选题: 这是一份高考数学全国新课标I卷3年(2021-2023)真题汇编-单选题,共17页。试卷主要包含了单选题等内容,欢迎下载使用。
高考数学全国新课标II卷3年(2021-2023)真题汇编-填空题: 这是一份高考数学全国新课标II卷3年(2021-2023)真题汇编-填空题,共8页。试卷主要包含了填空题等内容,欢迎下载使用。
高考数学全国新课标II卷3年(2021-2023)真题汇编-解答题: 这是一份高考数学全国新课标II卷3年(2021-2023)真题汇编-解答题,共30页。试卷主要包含了解答题等内容,欢迎下载使用。