所属成套资源:各地区高考数学3年(2021-2023)真题分类汇编
高考数学全国新课标II卷3年(2021-2023)真题汇编-多选题
展开
这是一份高考数学全国新课标II卷3年(2021-2023)真题汇编-多选题,共14页。试卷主要包含了多选题等内容,欢迎下载使用。
高考数学全国新课标II卷3年(2021-2023)真题汇编-多选题
一、多选题
1.下列统计量中,能度量样本的离散程度的是( )
A.样本的标准差 B.样本的中位数
C.样本的极差 D.样本的平均数
2.如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点.则满足的是( )
A. B.
C. D.
3.已知直线与圆,点,则下列说法正确的是( )
A.若点A在圆C上,则直线l与圆C相切 B.若点A在圆C内,则直线l与圆C相离
C.若点A在圆C外,则直线l与圆C相离 D.若点A在直线l上,则直线l与圆C相切
4.设正整数,其中,记.则( )
A. B.
C. D.
5.已知函数的图像关于点中心对称,则( )
A.在区间单调递减
B.在区间有两个极值点
C.直线是曲线的对称轴
D.直线是曲线的切线
6.已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则( )
A.直线的斜率为 B.
C. D.
7.如图,四边形为正方形,平面,,记三棱锥,,的体积分别为,则( )
A. B.
C. D.
8.若x,y满足,则( )
A. B.
C. D.
9.已知圆锥的顶点为P,底面圆心为O,AB为底面直径,,,点C在底面圆周上,且二面角为45°,则( ).
A.该圆锥的体积为 B.该圆锥的侧面积为
C. D.的面积为
10.设O为坐标原点,直线过抛物线的焦点,且与C交于M,N两点,l为C的准线,则( ).
A. B.
C.以MN为直径的圆与l相切 D.为等腰三角形
11.若函数既有极大值也有极小值,则( ).
A. B. C. D.
12.在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为,收到0的概率为;发送1时,收到0的概率为,收到1的概率为. 考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输 是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).
A.采用单次传输方案,若依次发送1,0,1,则依次收到l,0,1的概率为
B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为
C.采用三次传输方案,若发送1,则译码为1的概率为
D.当时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率
参考答案:
1.AC
【分析】考查所给的选项哪些是考查数据的离散程度,哪些是考查数据的集中趋势即可确定正确选项.
【详解】由标准差的定义可知,标准差考查的是数据的离散程度;
由中位数的定义可知,中位数考查的是数据的集中趋势;
由极差的定义可知,极差考查的是数据的离散程度;
由平均数的定义可知,平均数考查的是数据的集中趋势;
故选:AC.
2.BC
【分析】根据线面垂直的判定定理可得BC的正误,平移直线构造所考虑的线线角后可判断AD的正误.
【详解】设正方体的棱长为,
对于A,如图(1)所示,连接,则,
故(或其补角)为异面直线所成的角,
在直角三角形,,,故,
故不成立,故A错误.
对于B,如图(2)所示,取的中点为,连接,,则,,
由正方体可得平面,而平面,
故,而,故平面,
又平面,,而,
所以平面,而平面,故,故B正确.
对于C,如图(3),连接,则,由B的判断可得,
故,故C正确.
对于D,如图(4),取的中点,的中点,连接,
则,
因为,故,故,
所以或其补角为异面直线所成的角,
因为正方体的棱长为2,故,,
,,故不是直角,
故不垂直,故D错误.
故选:BC.
3.ABD
【分析】转化点与圆、点与直线的位置关系为的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解.
【详解】圆心到直线l的距离,
若点在圆C上,则,所以,
则直线l与圆C相切,故A正确;
若点在圆C内,则,所以,
则直线l与圆C相离,故B正确;
若点在圆C外,则,所以,
则直线l与圆C相交,故C错误;
若点在直线l上,则即,
所以,直线l与圆C相切,故D正确.
故选:ABD.
4.ACD
【分析】利用的定义可判断ACD选项的正误,利用特殊值法可判断B选项的正误.
【详解】对于A选项,,,
所以,,A选项正确;
对于B选项,取,,,
而,则,即,B选项错误;
对于C选项,,
所以,,
,
所以,,因此,,C选项正确;
对于D选项,,故,D选项正确.
故选:ACD.
5.AD
【分析】根据三角函数的性质逐个判断各选项,即可解出.
【详解】由题意得:,所以,,
即,
又,所以时,,故.
对A,当时,,由正弦函数图象知在上是单调递减;
对B,当时,,由正弦函数图象知只有1个极值点,由,解得,即为函数的唯一极值点;
对C,当时,,,直线不是对称轴;
对D,由得:,
解得或,
从而得:或,
所以函数在点处的切线斜率为,
切线方程为:即.
故选:AD.
6.ACD
【分析】由及抛物线方程求得,再由斜率公式即可判断A选项;表示出直线的方程,联立抛物线求得,即可求出判断B选项;由抛物线的定义求出即可判断C选项;由,求得,为钝角即可判断D选项.
【详解】对于A,易得,由可得点在的垂直平分线上,则点横坐标为,
代入抛物线可得,则,则直线的斜率为,A正确;
对于B,由斜率为可得直线的方程为,联立抛物线方程得,
设,则,则,代入抛物线得,解得,则,
则,B错误;
对于C,由抛物线定义知:,C正确;
对于D,,则为钝角,
又,则为钝角,
又,则,D正确.
故选:ACD.
7.CD
【分析】直接由体积公式计算,连接交于点,连接,由计算出,依次判断选项即可.
【详解】
设,因为平面,,则,
,连接交于点,连接,易得,
又平面,平面,则,又,平面,则平面,
又,过作于,易得四边形为矩形,则,
则,,
,则,,,
则,则,,,故A、B错误;C、D正确.
故选:CD.
8.BC
【分析】根据基本不等式或者取特值即可判断各选项的真假.
【详解】因为(R),由可变形为,,解得,当且仅当时,,当且仅当时,,所以A错误,B正确;
由可变形为,解得,当且仅当时取等号,所以C正确;
因为变形可得,设,所以,因此
,所以当时满足等式,但是不成立,所以D错误.
故选:BC.
9.AC
【分析】根据圆锥的体积、侧面积判断A、B选项的正确性,利用二面角的知识判断C、D选项的正确性.
【详解】依题意,,,所以,
A选项,圆锥的体积为,A选项正确;
B选项,圆锥的侧面积为,B选项错误;
C选项,设是的中点,连接,
则,所以是二面角的平面角,
则,所以,
故,则,C选项正确;
D选项,,所以,D选项错误.
故选:AC.
10.AC
【分析】先求得焦点坐标,从而求得,根据弦长公式求得,根据圆与等腰三角形的知识确定正确答案.
【详解】A选项:直线过点,所以抛物线的焦点,
所以,则A选项正确,且抛物线的方程为.
B选项:设,
由消去并化简得,
解得,所以,B选项错误.
C选项:设的中点为,到直线的距离分别为,
因为,
即到直线的距离等于的一半,所以以为直径的圆与直线相切,C选项正确.
D选项:直线,即,
到直线的距离为,
所以三角形的面积为,
由上述分析可知,
所以,
所以三角形不是等腰三角形,D选项错误.
故选:AC.
11.BCD
【分析】求出函数的导数,由已知可得在上有两个变号零点,转化为一元二次方程有两个不等的正根判断作答.
【详解】函数的定义域为,求导得,
因为函数既有极大值也有极小值,则函数在上有两个变号零点,而,
因此方程有两个不等的正根,
于是,即有,,,显然,即,A错误,BCD正确.
故选:BCD
12.ABD
【分析】利用相互独立事件的概率公式计算判断AB;利用相互独立事件及互斥事件的概率计算判断C;求出两种传输方案的概率并作差比较判断D作答.
【详解】对于A,依次发送1,0,1,则依次收到l,0,1的事件是发送1接收1、发送0接收0、发送1接收1的3个事件的积,
它们相互独立,所以所求概率为,A正确;
对于B,三次传输,发送1,相当于依次发送1,1,1,则依次收到l,0,1的事件,
是发送1接收1、发送1接收0、发送1接收1的3个事件的积,
它们相互独立,所以所求概率为,B正确;
对于C,三次传输,发送1,则译码为1的事件是依次收到1,1,0、1,0,1、0,1,1和1,1,1的事件和,
它们互斥,由选项B知,所以所求的概率为,C错误;
对于D,由选项C知,三次传输,发送0,则译码为0的概率,
单次传输发送0,则译码为0的概率,而,
因此,即,D正确.
故选:ABD
【点睛】关键点睛:利用概率加法公式及乘法公式求概率,把要求概率的事件分拆成两两互斥事件的和,相互独立事件的积是解题的关键.
相关试卷
这是一份高考数学全国新课标I卷3年(2021-2023)真题汇编-多选题,共15页。试卷主要包含了多选题等内容,欢迎下载使用。
这是一份高考数学全国新课标II卷3年(2021-2023)真题汇编-填空题,共8页。试卷主要包含了填空题等内容,欢迎下载使用。
这是一份高考数学全国新课标II卷3年(2021-2023)真题汇编-解答题,共30页。试卷主要包含了解答题等内容,欢迎下载使用。