高考数学全国新课标I卷3年(2021-2023)真题汇编-单选题
展开高考数学全国新课标I卷3年(2021-2023)真题汇编-单选题
一、单选题
1.已知集合,,则( )
A. B. C. D.2
2.已知,则( )
A. B. C.0 D.1
3.已知向量,若,则( )
A. B.
C. D.
4.设函数在区间上单调递减,则的取值范围是( )
A. B.
C. D.
5.设椭圆的离心率分别为.若,则( )
A. B. C. D.
6.过点与圆相切的两条直线的夹角为,则( )
A.1 B. C. D.
7.记为数列的前项和,设甲:为等差数列;乙:为等差数列,则( )
A.甲是乙的充分条件但不是必要条件
B.甲是乙的必要条件但不是充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件也不是乙的必要条件
8.已知,则( ).
A. B. C. D.
9.若集合,则( )
A. B. C. D.
10.若,则( )
A. B. C.1 D.2
11.在中,点D在边AB上,.记,则( )
A. B. C. D.
12.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()( )
A. B. C. D.
13.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )
A. B. C. D.
14.记函数的最小正周期为T.若,且的图象关于点中心对称,则( )
A.1 B. C. D.3
15.设,则( )
A. B. C. D.
16.已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是( )
A. B. C. D.
17.设集合,,则( )
A. B. C. D.
18.已知,则( )
A. B. C. D.
19.已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为( )
A. B. C. D.
20.下列区间中,函数单调递增的区间是( )
A. B. C. D.
21.已知,是椭圆:的两个焦点,点在上,则的最大值为( )
A.13 B.12 C.9 D.6
22.若,则( )
A. B. C. D.
23.若过点可以作曲线的两条切线,则( )
A. B.
C. D.
24.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )
A.甲与丙相互独立 B.甲与丁相互独立
C.乙与丙相互独立 D.丙与丁相互独立
参考答案:
1.C
【分析】方法一:由一元二次不等式的解法求出集合,即可根据交集的运算解出.
方法二:将集合中的元素逐个代入不等式验证,即可解出.
【详解】方法一:因为,而,
所以.
故选:C.
方法二:因为,将代入不等式,只有使不等式成立,所以.
故选:C.
2.A
【分析】根据复数的除法运算求出,再由共轭复数的概念得到,从而解出.
【详解】因为,所以,即.
故选:A.
3.D
【分析】根据向量的坐标运算求出,,再根据向量垂直的坐标表示即可求出.
【详解】因为,所以,,
由可得,,
即,整理得:.
故选:D.
4.D
【分析】利用指数型复合函数单调性,判断列式计算作答.
【详解】函数在R上单调递增,而函数在区间上单调递减,
则有函数在区间上单调递减,因此,解得,
所以的取值范围是.
故选:D
5.A
【分析】根据给定的椭圆方程,结合离心率的意义列式计算作答.
【详解】由,得,因此,而,所以.
故选:A
6.B
【分析】方法一:根据切线的性质求切线长,结合倍角公式运算求解;方法二:根据切线的性质求切线长,结合余弦定理运算求解;方法三:根据切线结合点到直线的距离公式可得,利用韦达定理结合夹角公式运算求解.
【详解】方法一:因为,即,可得圆心,半径,
过点作圆C的切线,切点为,
因为,则,
可得,
则,
,
即为钝角,
所以;
法二:圆的圆心,半径,
过点作圆C的切线,切点为,连接,
可得,则,
因为
且,则,
即,解得,
即为钝角,则,
且为锐角,所以;
方法三:圆的圆心,半径,
若切线斜率不存在,则切线方程为,则圆心到切点的距离,不合题意;
若切线斜率存在,设切线方程为,即,
则,整理得,且
设两切线斜率分别为,则,
可得,
所以,即,可得,
则,
且,则,解得.
故选:B.
7.C
【分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n项和与第n项的关系推理判断作答.,
【详解】方法1,甲:为等差数列,设其首项为,公差为,
则,
因此为等差数列,则甲是乙的充分条件;
反之,乙:为等差数列,即为常数,设为,
即,则,有,
两式相减得:,即,对也成立,
因此为等差数列,则甲是乙的必要条件,
所以甲是乙的充要条件,C正确.
方法2,甲:为等差数列,设数列的首项,公差为,即,
则,因此为等差数列,即甲是乙的充分条件;
反之,乙:为等差数列,即,
即,,
当时,上两式相减得:,当时,上式成立,
于是,又为常数,
因此为等差数列,则甲是乙的必要条件,
所以甲是乙的充要条件.
故选:C
8.B
【分析】根据给定条件,利用和角、差角的正弦公式求出,再利用二倍角的余弦公式计算作答.
【详解】因为,而,因此,
则,
所以.
故选:B
【点睛】方法点睛:三角函数求值的类型及方法
(1)“给角求值”:一般所给出的角都是非特殊角,从表面来看较难,但非特殊角与特殊角总有一定关系.解题时,要利用观察得到的关系,结合三角函数公式转化为特殊角的三角函数.
(2)“给值求值”:给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.
(3)“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角,有时要压缩角的取值范围.
9.D
【分析】求出集合后可求.
【详解】,故,
故选:D
10.D
【分析】利用复数的除法可求,从而可求.
【详解】由题设有,故,故,
故选:D
11.B
【分析】根据几何条件以及平面向量的线性运算即可解出.
【详解】因为点D在边AB上,,所以,即,
所以.
故选:B.
12.C
【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.
【详解】依题意可知棱台的高为(m),所以增加的水量即为棱台的体积.
棱台上底面积,下底面积,
∴
.
故选:C.
13.D
【分析】由古典概型概率公式结合组合、列举法即可得解.
【详解】从2至8的7个整数中随机取2个不同的数,共有种不同的取法,
若两数不互质,不同的取法有:,共7种,
故所求概率.
故选:D.
14.A
【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.
【详解】由函数的最小正周期T满足,得,解得,
又因为函数图象关于点对称,所以,且,
所以,所以,,
所以.
故选:A
15.C
【分析】构造函数, 导数判断其单调性,由此确定的大小.
【详解】方法一:构造法
设,因为,
当时,,当时,
所以函数在单调递减,在上单调递增,
所以,所以,故,即,
所以,所以,故,所以,
故,
设,则,
令,,
当时,,函数单调递减,
当时,,函数单调递增,
又,
所以当时,,
所以当时,,函数单调递增,
所以,即,所以
故选:C.
方法二:比较法
解: , , ,
① ,
令
则 ,
故 在 上单调递减,
可得 ,即 ,所以 ;
② ,
令
则 ,
令 ,所以 ,
所以 在 上单调递增,可得 ,即 ,
所以 在 上单调递增,可得 ,即 ,所以
故
16.C
【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.
【详解】∵球的体积为,所以球的半径,
[方法一]:导数法
设正四棱锥的底面边长为,高为,
则,,
所以,
所以正四棱锥的体积,
所以,
当时,,当时,,
所以当时,正四棱锥的体积取最大值,最大值为,
又时,,时,,
所以正四棱锥的体积的最小值为,
所以该正四棱锥体积的取值范围是.
故选:C.
[方法二]:基本不等式法
由方法一故所以当且仅当取到,
当时,得,则
当时,球心在正四棱锥高线上,此时,
,正四棱锥体积,故该正四棱锥体积的取值范围是
17.B
【分析】利用交集的定义可求.
【详解】由题设有,
故选:B .
18.C
【分析】利用复数的乘法和共轭复数的定义可求得结果.
【详解】因为,故,故
故选:C.
19.B
【分析】设圆锥的母线长为,根据圆锥底面圆的周长等于扇形的弧长可求得的值,即为所求.
【详解】设圆锥的母线长为,由于圆锥底面圆的周长等于扇形的弧长,则,解得.
故选:B.
20.A
【分析】解不等式,利用赋值法可得出结论.
【详解】因为函数的单调递增区间为,
对于函数,由,
解得,
取,可得函数的一个单调递增区间为,
则,,A选项满足条件,B不满足条件;
取,可得函数的一个单调递增区间为,
且,,CD选项均不满足条件.
故选:A.
【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成形式,再求的单调区间,只需把看作一个整体代入的相应单调区间内即可,注意要先把化为正数.
21.C
【分析】本题通过利用椭圆定义得到,借助基本不等式即可得到答案.
【详解】由题,,则,
所以(当且仅当时,等号成立).
故选:C.
【点睛】
22.C
【分析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(),进行齐次化处理,化为正切的表达式,代入即可得到结果.
【详解】将式子进行齐次化处理得:
.
故选:C.
【点睛】易错点睛:本题如果利用,求出的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论.
23.D
【分析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果;
解法二:画出曲线的图象,根据直观即可判定点在曲线下方和轴上方时才可以作出两条切线.
【详解】在曲线上任取一点,对函数求导得,
所以,曲线在点处的切线方程为,即,
由题意可知,点在直线上,可得,
令,则.
当时,,此时函数单调递增,
当时,,此时函数单调递减,
所以,,
由题意可知,直线与曲线的图象有两个交点,则,
当时,,当时,,作出函数的图象如下图所示:
由图可知,当时,直线与曲线的图象有两个交点.
故选:D.
解法二:画出函数曲线的图象如图所示,根据直观即可判定点在曲线下方和轴上方时才可以作出两条切线.由此可知.
故选:D.
【点睛】解法一是严格的证明求解方法,其中的极限处理在中学知识范围内需要用到指数函数的增长特性进行估计,解法二是根据基于对指数函数的图象的清晰的理解与认识的基础上,直观解决问题的有效方法.
24.B
【分析】根据独立事件概率关系逐一判断
【详解】 ,
故选:B
【点睛】判断事件是否独立,先计算对应概率,再判断是否成立
高考数学全国新课标I卷3年(2021-2023)真题汇编-填空题: 这是一份高考数学全国新课标I卷3年(2021-2023)真题汇编-填空题,共11页。试卷主要包含了填空题等内容,欢迎下载使用。
高考数学全国新课标I卷3年(2021-2023)真题汇编-解答题: 这是一份高考数学全国新课标I卷3年(2021-2023)真题汇编-解答题,共43页。试卷主要包含了解答题等内容,欢迎下载使用。
高考数学全国新课标I卷3年(2021-2023)真题汇编-多选题: 这是一份高考数学全国新课标I卷3年(2021-2023)真题汇编-多选题,共15页。试卷主要包含了多选题等内容,欢迎下载使用。