|试卷下载
终身会员
搜索
    上传资料 赚现金
    高考数学全国乙卷(理)3年(2021-2023)真题分类汇编-填空题
    立即下载
    加入资料篮
    高考数学全国乙卷(理)3年(2021-2023)真题分类汇编-填空题01
    高考数学全国乙卷(理)3年(2021-2023)真题分类汇编-填空题02
    高考数学全国乙卷(理)3年(2021-2023)真题分类汇编-填空题03
    还剩7页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学全国乙卷(理)3年(2021-2023)真题分类汇编-填空题

    展开
    这是一份高考数学全国乙卷(理)3年(2021-2023)真题分类汇编-填空题,共10页。试卷主要包含了填空题等内容,欢迎下载使用。

    高考数学全国乙卷(理)3年(2021-2023)真题分类汇编-填空题

    一、填空题
    1.(2023年高考全国乙卷数学(理)真题)已知点在抛物线C:上,则A到C的准线的距离为 .
    2.(2023年高考全国乙卷数学(理)真题)若x,y满足约束条件,则的最大值为 .
    3.(2023年高考全国乙卷数学(理)真题)已知为等比数列,,,则 .
    4.(2023年高考全国乙卷数学(理)真题)设,若函数在上单调递增,则a的取值范围是 .
    5.(2022年全国高考乙卷数学(理)试题)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为 .
    6.(2022年全国高考乙卷数学(理)试题)过四点中的三点的一个圆的方程为 .
    7.(2022年全国高考乙卷数学(理)试题)记函数的最小正周期为T,若,为的零点,则的最小值为 .
    8.(2022年全国高考乙卷数学(理)试题)已知和分别是函数(且)的极小值点和极大值点.若,则a的取值范围是 .
    9.(2021年全国高考乙卷数学(理)试题)已知双曲线的一条渐近线为,则C的焦距为 .
    10.(2021年全国高考乙卷数学(理)试题)已知向量,若,则 .
    11.(2021年全国高考乙卷数学(文)试题)记的内角A,B,C的对边分别为a,b,c,面积为,,,则 .
    12.(2021年全国高考乙卷数学(文)试题)以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为 (写出符合要求的一组答案即可).


    参考答案:
    1.
    【分析】由题意首先求得抛物线的标准方程,然后由抛物线方程可得抛物线的准线方程为,最后利用点的坐标和准线方程计算点到的准线的距离即可.
    【详解】由题意可得:,则,抛物线的方程为,
    准线方程为,点到的准线的距离为.
    故答案为:.
    2.8
    【分析】作出可行域,转化为截距最值讨论即可.
    【详解】作出可行域如下图所示:
    ,移项得,
    联立有,解得,
    设,显然平移直线使其经过点,此时截距最小,则最大,
    代入得,
    故答案为:8.
      
    3.
    【分析】根据等比数列公式对化简得,联立求出,最后得.
    【详解】设的公比为,则,显然,
    则,即,则,因为,则,
    则,则,则,
    故答案为:.
    4.
    【分析】原问题等价于恒成立,据此将所得的不等式进行恒等变形,可得,由右侧函数的单调性可得实数的二次不等式,求解二次不等式后可确定实数的取值范围.
    【详解】由函数的解析式可得在区间上恒成立,
    则,即在区间上恒成立,
    故,而,故,
    故即,故,
    结合题意可得实数的取值范围是.
    故答案为:.
    5./0.3
    【分析】根据古典概型计算即可
    【详解】解法一:设这5名同学分别为甲,乙,1,2,3,从5名同学中随机选3名,
    有:(甲,乙,1),(甲,乙,2),(甲,乙,3),(甲,1,2),(甲,1,3),(甲,2,3),(乙,1,2),(乙,1,3),(乙,2,3),(1,2,3),共10种选法;
    其中,甲、乙都入选的选法有3种,故所求概率.
    故答案为:.
    解法二:从5名同学中随机选3名的方法数为
    甲、乙都入选的方法数为,所以甲、乙都入选的概率
    故答案为:

    6.或或或.
    【分析】方法一:设圆的方程为,根据所选点的坐标,得到方程组,解得即可;
    【详解】[方法一]:圆的一般方程
    依题意设圆的方程为,
    (1)若过,,,则,解得,
    所以圆的方程为,即;
    (2)若过,,,则,解得,
    所以圆的方程为,即;
    (3)若过,,,则,解得,
    所以圆的方程为,即;
    (4)若过,,,则,解得,所以圆的方程为,即;
    故答案为:或 或 或.
    [方法二]:【最优解】圆的标准方程(三点中的两条中垂线的交点为圆心)

    (1)若圆过三点,圆心在直线,设圆心坐标为,
    则,所以圆的方程为;
    (2)若圆过三点, 设圆心坐标为,则,所以圆的方程为;
    (3)若圆过 三点,则线段的中垂线方程为,线段 的中垂线方程 为,联立得 ,所以圆的方程为;
    (4)若圆过三点,则线段的中垂线方程为, 线段中垂线方程为 ,联立得,所以圆的方程为.
    故答案为:或 或 或.
    【整体点评】方法一;利用圆过三个点,设圆的一般方程,解三元一次方程组,思想简单,运算稍繁;
    方法二;利用圆的几何性质,先求出圆心再求半径,运算稍简洁,是该题的最优解.

    7.
    【分析】首先表示出,根据求出,再根据为函数的零点,即可求出的取值,从而得解;
    【详解】解: 因为,(,)
    所以最小正周期,因为,
    又,所以,即,
    又为的零点,所以,解得,
    因为,所以当时;
    故答案为:

    8.
    【分析】法一:依题可知,方程的两个根为,即函数与函数的图象有两个不同的交点,构造函数,利用指数函数的图象和图象变换得到的图象,利用导数的几何意义求得过原点的切线的斜率,根据几何意义可得出答案.
    【详解】[方法一]:【最优解】转化法,零点的问题转为函数图象的交点
    因为,所以方程的两个根为,
    即方程的两个根为,
    即函数与函数的图象有两个不同的交点,
    因为分别是函数的极小值点和极大值点,
    所以函数在和上递减,在上递增,
    所以当时,,即图象在上方
    当时,,即图象在下方
    ,图象显然不符合题意,所以.
    令,则,
    设过原点且与函数的图象相切的直线的切点为,
    则切线的斜率为,故切线方程为,
    则有,解得,则切线的斜率为,
    因为函数与函数的图象有两个不同的交点,

    所以,解得,又,所以,
    综上所述,的取值范围为.
    [方法二]:【通性通法】构造新函数,二次求导
    =0的两个根为
    因为分别是函数的极小值点和极大值点,
    所以函数在和上递减,在上递增,
    设函数,则,
    若,则在上单调递增,此时若,则在
    上单调递减,在上单调递增,此时若有和分别是函数
    且的极小值点和极大值点,则,不符合题意;
    若,则在上单调递减,此时若,则在上单调递增,在上单调递减,令,则,此时若有和分别是函数且的极小值点和极大值点,且,则需满足,,即故,所以.
    【整体点评】法一:利用函数的零点与两函数图象交点的关系,由数形结合解出,突出“小题小做”,是该题的最优解;
    法二:通过构造新函数,多次求导判断单调性,根据极值点的大小关系得出不等式,解出即可,该法属于通性通法.

    9.4
    【分析】将渐近线方程化成斜截式,得出的关系,再结合双曲线中对应关系,联立求解,再由关系式求得,即可求解.
    【详解】由渐近线方程化简得,即,同时平方得,又双曲线中,故,解得(舍去),,故焦距.
    故答案为:4.
    【点睛】本题为基础题,考查由渐近线求解双曲线中参数,焦距,正确计算并联立关系式求解是关键.
    10.
    【分析】根据平面向量数量积的坐标表示以及向量的线性运算列出方程,即可解出.
    【详解】因为,所以由可得,
    ,解得.
    故答案为:.
    【点睛】本题解题关键是熟记平面向量数量积的坐标表示,设,
    ,注意与平面向量平行的坐标表示区分.
    11.
    【分析】由三角形面积公式可得,再结合余弦定理即可得解.
    【详解】由题意,,
    所以,
    所以,解得(负值舍去).
    故答案为:.
    12.③④(答案不唯一)
    【分析】由题意结合所给的图形确定一组三视图的组合即可.
    【详解】选择侧视图为③,俯视图为④,

    如图所示,长方体中,,
    分别为棱的中点,
    则正视图①,侧视图③,俯视图④对应的几何体为三棱锥.
    故答案为:③④.
    【点睛】三视图问题解决的关键之处是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系.




    相关试卷

    高考数学全国乙卷(文)3年(2021-2023)真题分类汇编-填空题、双空题: 这是一份高考数学全国乙卷(文)3年(2021-2023)真题分类汇编-填空题、双空题,共10页。试卷主要包含了填空题,双空题等内容,欢迎下载使用。

    高考数学全国乙卷(文)3年(2021-2023)真题分类汇编-单选题: 这是一份高考数学全国乙卷(文)3年(2021-2023)真题分类汇编-单选题,共24页。试卷主要包含了单选题等内容,欢迎下载使用。

    高考数学全国乙卷(文)3年(2021-2023)真题分类汇编-解答题: 这是一份高考数学全国乙卷(文)3年(2021-2023)真题分类汇编-解答题,共35页。试卷主要包含了解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        高考数学全国乙卷(理)3年(2021-2023)真题分类汇编-填空题
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map