年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    高考数学全国乙卷(文)3年(2021-2023)真题分类汇编-填空题、双空题

    高考数学全国乙卷(文)3年(2021-2023)真题分类汇编-填空题、双空题第1页
    高考数学全国乙卷(文)3年(2021-2023)真题分类汇编-填空题、双空题第2页
    高考数学全国乙卷(文)3年(2021-2023)真题分类汇编-填空题、双空题第3页
    还剩7页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学全国乙卷(文)3年(2021-2023)真题分类汇编-填空题、双空题

    展开

    这是一份高考数学全国乙卷(文)3年(2021-2023)真题分类汇编-填空题、双空题,共10页。试卷主要包含了填空题,双空题等内容,欢迎下载使用。
    高考数学全国乙卷(文)3年(2021-2023)真题分类汇编-填空题、双空题

    一、填空题
    1.(2023年高考全国甲卷数学(文)真题)记为等比数列的前项和.若,则的公比为 .
    2.(测试使用,请勿下载(全国甲卷理数))若为偶函数,则 .
    3.(测试使用,请勿下载(全国甲卷理数))若x,y满足约束条件,设的最大值为 .
    4.(2023年高考全国甲卷数学(文)真题)在正方体中,为的中点,若该正方体的棱与球的球面有公共点,则球的半径的取值范围是 .
    5.(2022年全国高考乙卷数学(文)试题)记为等差数列的前n项和.若,则公差 .
    6.(2022年全国高考乙卷数学(理)试题)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为 .
    7.(2022年全国高考乙卷数学(理)试题)过四点中的三点的一个圆的方程为 .
    8.(2021年全国高考乙卷数学(文)试题)已知向量,若,则 .
    9.(2021年全国高考乙卷数学(文)试题)双曲线的右焦点到直线的距离为 .
    10.(2021年全国高考乙卷数学(文)试题)记的内角A,B,C的对边分别为a,b,c,面积为,,,则 .
    11.(2021年全国高考乙卷数学(文)试题)以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为 (写出符合要求的一组答案即可).


    二、双空题
    12.(2022年全国高考乙卷数学(文)试题)若是奇函数,则 , .

    参考答案:
    1.
    【分析】先分析,再由等比数列的前项和公式和平方差公式化简即可求出公比.
    【详解】若,
    则由得,则,不合题意.
    所以.
    当时,因为,
    所以,
    即,即,即,
    解得.
    故答案为:
    2.2
    【分析】利用偶函数的性质得到,从而求得,再检验即可得解.
    【详解】因为为偶函数,定义域为,
    所以,即,
    则,故,
    此时,
    所以,
    又定义域为,故为偶函数,
    所以.
    故答案为:2.
    3.15
    【分析】由约束条件作出可行域,根据线性规划求最值即可.
    【详解】作出可行域,如图,
      
    由图可知,当目标函数过点时,有最大值,
    由可得,即,
    所以.
    故答案为:15
    4.
    【分析】当球是正方体的外接球时半径最大,当边长为的正方形是球的大圆的内接正方形时半径达到最小.
    【详解】设球的半径为.
    当球是正方体的外接球时,恰好经过正方体的每个顶点,所求的球的半径最大,若半径变得更大,球会包含正方体,导致球面和棱没有交点,
    正方体的外接球直径为体对角线长,即,故;
      
    分别取侧棱的中点,显然四边形是边长为的正方形,且为正方形的对角线交点,
    连接,则,当球的一个大圆恰好是四边形的外接圆,球的半径达到最小,即的最小值为.
    综上,.
    故答案为:
    5.2
    【分析】转化条件为,即可得解.
    【详解】由可得,化简得,
    即,解得.
    故答案为:2.

    6./0.3
    【分析】根据古典概型计算即可
    【详解】解法一:设这5名同学分别为甲,乙,1,2,3,从5名同学中随机选3名,
    有:(甲,乙,1),(甲,乙,2),(甲,乙,3),(甲,1,2),(甲,1,3),(甲,2,3),(乙,1,2),(乙,1,3),(乙,2,3),(1,2,3),共10种选法;
    其中,甲、乙都入选的选法有3种,故所求概率.
    故答案为:.
    解法二:从5名同学中随机选3名的方法数为
    甲、乙都入选的方法数为,所以甲、乙都入选的概率
    故答案为:

    7.或或或.
    【分析】方法一:设圆的方程为,根据所选点的坐标,得到方程组,解得即可;
    【详解】[方法一]:圆的一般方程
    依题意设圆的方程为,
    (1)若过,,,则,解得,
    所以圆的方程为,即;
    (2)若过,,,则,解得,
    所以圆的方程为,即;
    (3)若过,,,则,解得,
    所以圆的方程为,即;
    (4)若过,,,则,解得,所以圆的方程为,即;
    故答案为:或 或 或.
    [方法二]:【最优解】圆的标准方程(三点中的两条中垂线的交点为圆心)

    (1)若圆过三点,圆心在直线,设圆心坐标为,
    则,所以圆的方程为;
    (2)若圆过三点, 设圆心坐标为,则,所以圆的方程为;
    (3)若圆过 三点,则线段的中垂线方程为,线段 的中垂线方程 为,联立得 ,所以圆的方程为;
    (4)若圆过三点,则线段的中垂线方程为, 线段中垂线方程为 ,联立得,所以圆的方程为.
    故答案为:或 或 或.
    【整体点评】方法一;利用圆过三个点,设圆的一般方程,解三元一次方程组,思想简单,运算稍繁;
    方法二;利用圆的几何性质,先求出圆心再求半径,运算稍简洁,是该题的最优解.

    8.
    【分析】利用向量平行的充分必要条件得到关于的方程,解方程即可求得实数的值.
    【详解】由题意结合向量平行的充分必要条件可得:,
    解方程可得:.
    故答案为:.
    9.
    【分析】先求出右焦点坐标,再利用点到直线的距离公式求解.
    【详解】由已知,,所以双曲线的右焦点为,
    所以右焦点到直线的距离为.
    故答案为:
    10.
    【分析】由三角形面积公式可得,再结合余弦定理即可得解.
    【详解】由题意,,
    所以,
    所以,解得(负值舍去).
    故答案为:.
    11.③④(答案不唯一)
    【分析】由题意结合所给的图形确定一组三视图的组合即可.
    【详解】选择侧视图为③,俯视图为④,

    如图所示,长方体中,,
    分别为棱的中点,
    则正视图①,侧视图③,俯视图④对应的几何体为三棱锥.
    故答案为:③④.
    【点睛】三视图问题解决的关键之处是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系.



    12. ; .
    【分析】根据奇函数的定义即可求出.
    【详解】[方法一]:奇函数定义域的对称性
    若,则的定义域为,不关于原点对称

    若奇函数的有意义,则且
    且,
    函数为奇函数,定义域关于原点对称,
    ,解得,
    由得,,

    故答案为:;.
    [方法二]:函数的奇偶性求参


    函数为奇函数




    [方法三]:
    因为函数为奇函数,所以其定义域关于原点对称.
    由可得,,所以,解得:,即函数的定义域为,再由可得,.即,在定义域内满足,符合题意.
    故答案为:;.


    相关试卷

    高考数学天津卷3年(2021-2023)真题分类汇编-填空题、双空题:

    这是一份高考数学天津卷3年(2021-2023)真题分类汇编-填空题、双空题,共12页。试卷主要包含了填空题,双空题等内容,欢迎下载使用。

    高考数学全国乙卷(文)3年(2021-2023)真题分类汇编-单选题:

    这是一份高考数学全国乙卷(文)3年(2021-2023)真题分类汇编-单选题,共24页。试卷主要包含了单选题等内容,欢迎下载使用。

    高考数学全国乙卷(文)3年(2021-2023)真题分类汇编-解答题:

    这是一份高考数学全国乙卷(文)3年(2021-2023)真题分类汇编-解答题,共35页。试卷主要包含了解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map