年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    人教版数学九年级上册22.3《实际问题与二次函数—最大利润问题》课件

    人教版数学九年级上册22.3《实际问题与二次函数—最大利润问题》课件第1页
    人教版数学九年级上册22.3《实际问题与二次函数—最大利润问题》课件第2页
    人教版数学九年级上册22.3《实际问题与二次函数—最大利润问题》课件第3页
    人教版数学九年级上册22.3《实际问题与二次函数—最大利润问题》课件第4页
    人教版数学九年级上册22.3《实际问题与二次函数—最大利润问题》课件第5页
    人教版数学九年级上册22.3《实际问题与二次函数—最大利润问题》课件第6页
    人教版数学九年级上册22.3《实际问题与二次函数—最大利润问题》课件第7页
    人教版数学九年级上册22.3《实际问题与二次函数—最大利润问题》课件第8页
    还剩39页未读, 继续阅读
    下载需要25学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中人教版22.3 实际问题与二次函数优秀ppt课件

    展开

    这是一份初中人教版22.3 实际问题与二次函数优秀ppt课件,共47页。PPT课件主要包含了x+10,10x,b的值等内容,欢迎下载使用。
    1.能应用二次函数的性质解决商品销售过程中的最大利润问题.(重点)2.弄清商品销售问题中的数量关系及确定自变量的取值范围. (难点)
    在日常生活中存在着许许多多的与数学知识有关的实际问题.商品买卖过程中,作为商家追求利润最大化是永恒的追求.
    如果你是商场经理,如何定价才能使商场获得最大利润呢?
    例1 某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?
    涨价销售①每件涨价x元,则每星期售出商品的利润y元,填空:
    y=(20+x)(300-10x)
    建立函数关系式:y=(20+x)(300-10x),
    即:y=-10x2+100x+6000.
    1.自变量x的取值范围如何确定?
    营销规律是价格上涨,销量下降,因此只要考虑销售量就可以,故300-10x ≥0,且x ≥0,因此自变量的取值范围是0 ≤x ≤30.
    2.涨价多少元时,利润最大,最大利润是多少?
    y=-10x2+100x+6000,
    即定价65元时,最大利润是6250元.
    某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.售价提高多少元时,才能在半个月内获得最大利润?
    解:设售价提高x元时,半月内获得的利润为y元.则 y=(x+30-20)(400-20x) =-20x2+200x+4000 =-20(x-5)2+4500 ∴当x=5时,y最大 =4500 答:当售价提高5元时,半月内可获最大利润4500元.
    求解最大利润问题的一般步骤
    (1)建立利润与价格之间的函数关系式:运用“总利润=总售价-总成本”或“总利润=单件利润×销售量”
    (2)结合实际意义,确定自变量的取值范围;
    (3)在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和性质求出.
    例2 某商店试销一种新商品,新商品的进价为30元/件,经过一段时间的试销发现,每月的销售量会因售价的调整而不同.令每月销售量为y件,售价为x元/件,每月的总利润为Q元.
    (1)当售价在40~50元时,每月销售量都为60件,则此时每月的总利润最多是多少元?
    解:由题意得:当40≤x≤50时, Q = 60(x-30)= 60x-1800 ∵ y = 60 > 0,Q随x的增大而增大 ∴当x最大= 50时,Q最大= 1200 答:此时每月的总利润最多是1200元.
    (2)当售价在50~70元时,每月销售量与售价的关系如图所示,则此时当该商品售价x是多少元时,该商店每月获利最大,最大利润是多少元?
    解:当50≤x≤70时, 设y与x函数关系式为y=kx+b, ∵线段过(50,60)和(70,20).
    50k+b=6070k+b=20
    ∴y =-2x +160(50≤x≤70)
    k =-2b = 160
    ∴Q=(x-30)y =(x-30)(-2x + 160) =-2x2 + 220x- 4800 =-2(x-55)2 +1250 (50≤x≤70) ∵a = -2<0,图象开口向下,∴当x = 55时,Q最大= 1250∴当售价在50~70元时,售价x是55元时,获利最大, 最大利润是1250元.
    解:∵当40≤x≤50时, Q最大= 1200<1218 当50≤x≤70时, Q最大= 1250>1218 ∴售价x应在50~70元之间. ∴令:-2(x-55)2 +1250=1218 解得:x1=51,x2=59 当x1=51时,y1=-2x+160=-2×51+160= 58(件) 当x2=59时,y2=-2x+160= -2×59+160= 42(件)∴若4月份该商品销售后的总利润为1218元,则该商品售价为51元或59元,当月的销售量分别为58件或42件.
    (3)若4月份该商品销售后的总利润为1218元,则该商品售价与当月的销售量各是多少?
    某商店购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500个,据销售经验,售价每提高1元,销售量相应减少10个. (1)假设销售单价提高x元,那么销售每个篮球所获得的利润是_______元,这种篮球每月的销售量是 个(用x的代数式表示) (2)8000元是否为每月销售篮球的最大利润?如果是,说明理由,如果不是,请求出最大月利润,此时篮球的售价应定为多少元?
    8000元不是每月最大利润,最大月利润为9000元,此时篮球的售价为70元.
    1.某种商品每件的进价为20元,调查表明:在某段时间内若以每件x元(20 ≤x ≤30)出售,可卖出(300-20x)件,使利润最大,则每件售价应定为 元.
    2.进价为80元的某件定价100元时,每月可卖出2000件,价格每上涨1元,销售量便减少5件,那么每月售出衬衣的总件数y(件)与衬衣售价x(元)之间的函数关系式为 .每月利润w(元)与衬衣售价x(元)之间的函数关系式为 .(以上关系式只列式不化简).
    y=2000-5(x-100)
    w=[2000-5(x-100)](x-80)
    3.一工艺师生产的某种产品按质量分为9个档次.第1档次(最低档次)的产品一天能生产80件,每件可获利润12元.产品每提高一个档次,每件产品的利润增加2元,但一天产量减少4件.如果只从生产利润这一角度考虑,他生产哪个档次的产品,可获得最大利润?
    w=[12+2(x-1)][80-4(x-1)] =(10+2x)(84-4x) =-8x2+128x+840 =-8(x-8)2+1352.
    解:设生产x档次的产品时,每天所获得的利润为w元, 则
    当x=8时,w有最大值,且w最大=1352.
    答:该工艺师生产第8档次产品,可使利润最大,最大利润为1352.
    4. 某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx-75.其图象如图.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元?
    解:(1)由题中条件可求y=-x2+20x-75
    ∵-1

    相关课件

    实际问题与二次函数PPT课件免费下载:

    人教版初中数学九年级上册课文《实际问题与二次函数》,完整版PPT课件免费下载,优秀PPT背景图搭配,精美的免费ppt模板。轻松备课,欢迎免费下载使用。

    人教版九年级上册22.3 实际问题与二次函数教学演示课件ppt:

    这是一份人教版九年级上册22.3 实际问题与二次函数教学演示课件ppt,共13页。PPT课件主要包含了一般步骤等内容,欢迎下载使用。

    初中人教版22.3 实际问题与二次函数集体备课ppt课件:

    这是一份初中人教版22.3 实际问题与二次函数集体备课ppt课件,共14页。PPT课件主要包含了来到商场,我来当老板,牛刀小试,创新学习,解这类题目的一般步骤等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map