所属成套资源:2023新版北师大版八年级数学下册单元训练题(16分)
2023八年级数学下册第二章一元一次不等式和一元一次不等式组一元一次不等式应用题精讲及分类训练新版北师大版
展开
这是一份2023八年级数学下册第二章一元一次不等式和一元一次不等式组一元一次不等式应用题精讲及分类训练新版北师大版,共16页。
一元一次不等式(组)解应用题精讲及分类练习
识别不等式(组)类应用题的几个标志,供解题时参考.
一.下列情况列一元一次不等式解应用题
1.应用题中只含有一个不等量关系,文中明显存在着不等关系的字眼,如“至少”、“至多”、“不超过”等.
例1.为了能有效地使用电力资源,宁波市电业局从1月起进行居民峰谷用电试点,每天8:00至22:00用电千瓦时0.56元(“峰电” 价),22:00至次日8:00每千瓦时0.28元(“谷电” 价),而目前不使用“峰谷”电的居民用电每千瓦时0.53元.当“峰电”用量不超过每月总电量的百分之几时,使用“峰谷”电合算?
分析:本题的一个不等量关系是由句子“当‘峰电’用量不超过每月总电量的百分之几时,使用‘峰谷’电合算”得来的,文中带加点的字“不超过”明显告诉我们该题是一道需用不等式来解的应用题.
解:设当“峰电”用量占每月总用电量的百分率为x时,使用“峰谷”电合算,月用电量总量为y.依题意得0.56xy+0.28y(1-x)<0.53y.
解得x<89℅
答:当“峰电”用量占每月总用电量的89℅时,使用“峰谷”电合算.
2.应用题仍含有一个不等量关系,但这个不等量关系不是用明显的不等字眼来表达的,而是用比较隐蔽的不等字眼来表达的,需要根据题意作出判断.
例2.周未某班组织登山活动,同学们分甲、乙两组从山脚下沿着一条道路同时向山顶进发.设甲、乙两组行进同一段路程所用的时间之比为2:3.
⑴直接写出甲、乙两组行进速度之比;
⑵当甲组到达山顶时,乙组行进到山腰A处,且A处离山顶的路程尚有1.2千米.试问山脚离山顶的路程有多远?
⑶在题⑵所述内容(除最后的问句外)的基础上,设乙组从A处继续登山,甲组到达山顶后休息片刻,再从原路下山,并且在山腰B处与乙组相遇.请你先根据以上情景提出一个相应的问题,再给予解答(要求:①问题的提出不得再增添其他条件;②问题的解决必须利用上述情景提供的所有已知条件).
解:⑴甲、乙两组行进速度之比为3:2.
⑵设山腰离山顶的路程为x千米,依题意得方程为,
解得x=(千米).经检验x=是所列方程的解,
答:山脚离山顶的路程为千米.
⑶可提问题:“问B处离山顶的路程小于多少千米?”再解答如下:
设B处离山顶的路程为m千米(m>0)
甲、乙两组速度分别为3k千米/时,2k千米/时(k>0)
依题意得<,解得m<0.72(千米).
答:B处离山顶的路程小于0.72千米.
说明:本题由于所要提出的问题被两个条件所限制,因此,所提问题应从句子“乙组从A处继续登山,甲组到达山顶后休息片刻,再从原路下山,并且在山腰B处与乙组相遇”去突破,若注意到“甲组到达山顶后休息片刻”中加点的四个字,我们就可以看出题中隐含着这样一个不等关系:乙组从A处走到B处所用的时间比甲组从山顶下到B处所用的时间来得少,即可提出符合题目要求的问题且可解得正确的答案.
二.下列情况列一元一次不等式组解应用题
1.应用题中含有两个(或两个以上,下同)不等量的关系.它们是由两个明显的不等关系体现出来,一般是讲两件事或两种物品的制作、运输等.
例3.已知服装厂现有A种布料70米,B种布料52米,现计划用这两种面料生产M,N两种型号的时装共80套.已知做一套M型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元;做一套N型号的时装需用A种布料1.1米,B种布料0.4米,可获利润50元.若设生产N型号码的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元.
(1)求y(元)与x(套)的函数关系式,并求出自变量x的取值范围;
(2)服装厂在生产这批时装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少?
分析:本题存在的两个不等量关系是:①合计生产M、N型号的服装所需A种布料不大于70米;②合计生产M、N型号的服装所需B种布料不大于52米.
解:(1),即.
依题意得
解之,得40≤x≤44.
∵x为整数,∴自变量x的取值范围是40,41,42,43,44.
(2)略
2.两个不等关系直接可从题中的字眼找到,这些字眼明显存在着上下限.
例4.某校为了奖励在数学竞赛中获胜的学生,买了若干本课外读物准备送给他们.如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本.设该校买了m本课外读物,有x名学生获奖.请回答下列问题:
(1)用含x的代数式表示m;
(2)求出该校的获奖人数及所买课外读物的本数.
分析:不等字眼“不足3本”即是说全部课外读物减去5(x-1)本后所余课外读物应在大于等于0而小于3这个范围内.
解:(1)m=3x+8
(2)由题意,得
∴不等式组的解集是:5=8
所以至多打8折
3.“中秋节”期间苹果很热销,一商家进了一批苹果,进价为每千克1.5元,销售中有6%的苹果损耗,商家把售价至少定为每kg多少元,才能避免亏本?
1.6元
1000×1.5=1500
1500÷(1-6%)≤ 实际价格
2、某电影院暑假向学生优惠开放,每张票2元。另外,每场次还可以售出每张5元的普通票300张,如果要保持每场次票房收入不低于2000元,那么平均每场次至少应出售学生优惠票多少张?
设应售出X张学生优惠票,当收入等于2000元时:
2X+5*300=2000
2X=500
X=250
即每场至少售出250张学生优惠票。
4.某中学需要刻录一批电脑光盘,若到电脑公司刻录,每张需8元(包括空白光盘费);若学校自刻,出租用刻录机需120元外,每张光盘还需成本4元(包括空白光盘费)。问刻录这批电脑光盘,该校如何选择,才能使费用较少?
8x>120+4x
x>30
答:如果少于30张,电脑公司刻合适,
如果等于30张,(不考虑飞盘)都可以。
如果大于30张,那还是自刻便宜!而且刻录张数越多,自刻越便宜!
题外话:
现在的刻录机很便宜,空白光盘成本才1元左右,还是自己刻录省钱。
5.某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人月工资分别为600元和1000元.现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少?
解:设乙工种招聘x人
x≥2(150-x)
∴x≥100
W[工资]=600(150-x)+1000x=400x+90000
∵400>0,
∴x=100时,W[工资]最少=400×100+90000=130000(元)
甲乙工人各招聘50人、100人时每月所付的工资最少为130000元
6.学校图书馆准备购买定价分别为8元和14元的杂志和小说共80本,计划用钱在750元到850元之间(包括750元和850元),那么14元一本的小说最少可以买多少本?
设14元一本的小说可以买x本,则8元一本的小说可以买(80-x)本。根据题意,有:
750≤14x+8(80-x)≤850 (若想列为方程组则可拆为两个不等式)
750≤640+6x≤850
110≤6x≤210
18.33≤x≤21
取整数,则可得知:14元一本的小说最少可以买19本,最多可以买21本。
(数字问题)1.有一个两位数,其十位上的数比个位上的数小2,已知这个两位数大于20且小于40,求这个两位数
分析:这题是一个数字应用题,题目中既含有相等关系,又含有不等关系,需运用不等式的知识来解决。题目中有两个主要未知数------十位上的数字与个位上的数;一个相等关系:个位上的数=十位上的数+2,一个不等关系:20