终身会员
搜索
    上传资料 赚现金

    统计概率解答题9大常考题型专题训练-【高考备考题型讲义】备战2024年高考数学常考题型分类讲义(新高考专用)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      2024年新高考统计概率解答题9大常考题型专题训练(原卷版).docx
    • 解析
      2024年新高考统计概率解答题9大常考题型专题训练(解析版).docx
    2024年新高考统计概率解答题9大常考题型专题训练(原卷版)第1页
    2024年新高考统计概率解答题9大常考题型专题训练(原卷版)第2页
    2024年新高考统计概率解答题9大常考题型专题训练(原卷版)第3页
    2024年新高考统计概率解答题9大常考题型专题训练(解析版)第1页
    2024年新高考统计概率解答题9大常考题型专题训练(解析版)第2页
    2024年新高考统计概率解答题9大常考题型专题训练(解析版)第3页
    还剩47页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    统计概率解答题9大常考题型专题训练-【高考备考题型讲义】备战2024年高考数学常考题型分类讲义(新高考专用)

    展开

    这是一份统计概率解答题9大常考题型专题训练-【高考备考题型讲义】备战2024年高考数学常考题型分类讲义(新高考专用),文件包含2024年新高考统计概率解答题9大常考题型专题训练解析版docx、2024年新高考统计概率解答题9大常考题型专题训练原卷版docx等2份试卷配套教学资源,其中试卷共153页, 欢迎下载使用。


    2024年新高考统计概率解答题9大常考题型专题训练
    【题型目录】
    题型一:统计案例检验解答题
    题型二:线性回归方程,相关系数有关解答题
    题型三:条件概率的计算及应用
    题型四:离散型随机变量分布列,期望及方差
    题型五:二项分布解答题有关问题
    题型六:统计概率中的中位数,百分位数,均值计算问题
    题型七:正态分布在解答题中的应用
    题型八:统计概率中与数列有关的解答题
    题型九:统计概率中的最值范围问题
    【题型总结】
    题型一:统计案例检验解答题
    【例1】某商店销售某种产品,为了解客户对该产品的评价,现随机调查了200名客户,其评价结果为“一般”或“良好”,并得到如下列联表:

    一般
    良好
    合计

    20
    100
    120

    30
    50
    80
    合计
    50
    150
    200
    (1)通过计算判断,有没有99%的把握认为客户对该产品的评价结果与性别有关系?
    (2)利用样本数据,在评价结果为“良好”的客户中,按照性别用分层抽样的方法抽取了6名客户.若从这6名客户中随机选择2名进行访谈,求所抽取的2名客户中至少有1名女性的概率.
    附表及公式:

    0.15
    0.10
    0.05
    0.025
    0.010

    2.072
    2.706
    3.841
    5.024
    6.635
    其中,.

    【例2】2022年12月2日晚,神舟十四号、神舟十五号航天员乘组进行在轨交接仪式,两个乘组移交了中国空间站的钥匙,6名航天员分别在确认书上签字,中国空间站正式开启长期有人驻留模式.为调查大学生对中国航天事业的了解情况,某大学进行了一次抽样调查,若被调查的男女生人数均为,统计得到以下列联表,经计算,有97.5%的把握认为该校学生对中国航天事业的了解与性别有关,但没有99%的把握认为该校学生对中国航天事业的了解与性别有关.

    男生
    女生
    合计
    了解



    不了解



    合计



    求n的值;


    0.05
    0.025
    0.010

    3.841
    5.024
    6.635









    【例3】国际足联世界杯,简称“世界杯”,是由全世界国家级别球队参与的,并具有最大知名度和影响力的足球赛事,2022年世界杯于11月21日—12月18日在卡塔尔举行.某大学为了解本校学生对世界杯的关注程度,从学生中随机抽取了200名学生进行调查(其中男生120名),根据样本的调查结果得到如下图所示的等高规程条形图.

    关注
    不关注
    合计
    男生



    女生



    合计




    (1)请完成上面的列联表,并判断能否有的把握认为学生是否关注世界杯与性别有关.
    (2)从这200名学生里对世界杯关注的学生中,按性别采用分层抽样的方法抽取8名学生,再从这8名学生中随机选取3名参与学校足协活动.记参与学校足协活动的男生人数为,求的分布列与期望.
    附:,其中.

    0.050
    0.010
    0.005
    0.001

    3.841
    6.635
    7.879
    10.828





    【例4】冰雪运动是深受学生喜爱的一项户外运动,为了研究性别与学生是否喜爱冰雪运动之间的关系,从某高校男、女生中各随机抽取100名进行问卷调查,得到如下列联表.

    喜爱
    不喜爱
    男生


    女生


    (1)当时,从样本中不喜爱冰雪运动的学生中,按性别采用分层抽样的方法抽取6人,再从这6人中随机抽取3人调研不喜爱的原因,记这3人中女生的人数为,求的分布列与数学期望.
    (2)定义,其中为列联表中第行第列的实际数据,为列联表中第行与第列的总频率之积再乘以列联表的总额数得到的理论频数,如,.基于小概率值的检验规则:首先提出零假设(变量X,Y相互独立),然后计算的值,当时,我们推断不成立,即认为X和Y不独立,该推断犯错误的概率不超过;否则,我们没有充分证据推断不成立,可以认为X和Y独立.根据的计算公式,求解下面问题:
    ①当时,依据小概率值的独立性检验,分析性别与是否喜爱冰雪运动有关?
    ②当时,依据小概率值的独立性检验,若认为性别与是否喜爱冰雪运动有关,则至少有多少名男生喜爱冰雪运动?
    附:

    0.1
    0.025
    0.005

    2.706
    5.024
    7.879







    【例5】九江市正在创建第七届全国文明城市,某中学为了增强学生对九江创文的了解和重视,组织全校高三学生进行了“创文知多少”知识竞赛(满分100),现从中随机抽取了文科生、理科生各100名同学,统计他们的知识竞赛成绩分布如下:






    文科生
    1
    16
    23
    44
    16
    理科生
    9
    24
    27
    32
    8
    合计
    10
    40
    50
    76
    24
    (1)在得分小于80分的学生样本中,按文理科类分层抽样抽取5名学生.
    ①求抽取的5名学生中文科生、理科生各多少人;
    ②从这5名学生中随机抽取2名学生,求抽取的2名学生中至少有一名文科生的概率.
    (2)如果得分大于等于80分可获“创文竞赛优秀奖”,能否有99.9%的把握认为获“创文竞赛优秀奖”与文理科类有关?
    参考数据:

    0.10
    0.05
    0.01
    0.005
    0.001

    2.706
    3.841
    6.635
    7.879
    10.828
    ,其中.









    【题型专练】
    1.某大学“爱牙协会”为了解“爱吃甜食”与青少年“蛀牙”情况之间的关系,随机对200名青少年展开了调查,得知这200个人中共有120个人“有蛀牙”,其中“不爱吃甜食”且“有蛀牙”的有30人,“不爱吃甜食”且“无蛀牙”的有50人.有列联表:

    有蛀牙
    无蛀牙
    总计
    爱吃甜食



    不爱吃甜食



    总计



    (1)根据已知条件完成如图所给的列联表,并判断是否有99.5%的把握认为“爱吃甜食”与青少年“蛀牙”有关;
    (2)若从“无蛀牙”的青少年中用分层抽样的方法随机抽取8人作进一步调查,再从这抽取的8人中随机抽取2人去担任“爱牙宣传志愿者”,求抽取的2人都是“不爱吃甜食”且“无蛀牙”的青少年的概率.
    附:,.

    0.05
    0.01
    0.005

    3.841
    6.635
    7.879










    2.某中学在高一学生选科时,要求每位学生先从物理和和历史这两个科目中选定一个科目,再从思想政治、地理、化学、生物这四个科目中任选两个科目.选科工作完成后,为了解该校高一学生的选科情况,随机抽取了部分学生作为样本,对他们的选科情况统计后得到下表:

    思想政治
    地理
    化学
    生物
    物理类
    100
    120
    200
    180
    历史类
    120
    140
    60
    80
    (1)利用上述样本数据填写以下列联表,并依据小概率值的独立性检验,分析以上两类学生对生物学科的选法是否存在差异.
    科类
    生物学科选法


    不选
    合计
    物理类



    历史类



    合计



    (2)假设该校高一所有学生中有的学生选择了物理类,其余的学生都选择了历史类,且在物理类的学生中其余两科选择的是地理和化学的概率为,而在历史类的学生中其余两科选择的是地理和化学的概率为.若从该校高一所有学生中随机抽取100名学生,用表示这100名学生中同时选择了地理和化学的人数,求随机变量的均值.
    附:

    0.1
    0.05
    0.001
    0.005
    0.001

    2.706
    3.841
    6.635
    7.879
    10.828



    3.新冠疫情过后,国内相继爆发了甲型H1N1流感病毒(甲流)和诺如病毒感染潮,为了了解感染病毒类型与年龄的关系,某市疾控中心随机抽取了部分感染者进行调查.据统计,甲流患者数是诺如病毒感染者人数的2倍,在诺如病毒感染者中60岁以上患者占,在甲流患者中60岁以上的人数是其他人数的一半.
    (1)若根据卡方检验,有超过99.5%的把握认为“感染病毒的类型与年龄有关”,则抽取的诺如病毒感染者至少有多少人?
    (2)研究发现,针对以上两种病毒比较有效的药物是奥司他韦和抗病毒口服液,并且发现奥司他韦治疗以上两种病毒有效的概率是抗病毒口服液的2倍.现对两种药物进行临床试验,对抗病毒口服液共进行两轮试验,每轮试验中若连续2次有效或试验3次时,本轮试验结束;对奥司他韦先进行3次试验,若至少2次有效,则试验结束,否则再进行3次试验后方可结束,假定两种药物每次试验是否有效均互相独立,且两种药物的每次试验费用相同.请结合以上针对两种药物的临床试验方案,估计哪种药物的试验费用较低?
    附:(其中n=a+b+c+d)

    0.10
    0.05
    0.010
    0.005
    0.001

    2.706
    3.841
    6.635
    7.879
    10.828














    题型二:线性回归方程,相关系数有关解答题
    【例1】据统计,某校高三打印室月份购买的打印纸的箱数如表:
    月份代号t
    1
    2
    3
    4
    打印纸的数量y(箱)
    60
    65
    70
    85
    (1)求相关系数r,并从r的角度分析能否用线性回归模型拟合y与t的关系(若,则线性相关程度很强,可用线性回归模型拟合);
    (2)建立y关于t的回归方程,并用其预测5月份该校高三打印室需购买的打印纸约为多少箱.
    参考公式:对于一组具有线性相关关系的数据,其回归直线的斜率和截距的最小二乘估计分别为,
    相关系数
    参考数据:













    【例2】基础学科招生改革试点,也称强基计划,强基计划是教育部开展的招生改革工作,主要是为了选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.聚焦高端芯片与软件、智能科技、新材料、先进制造和国家安全等关键领域以及国家人才紧缺的人文社会科学领域.某校在一次强基计划模拟考试后,从全体考生中随机抽取52名,获取他们本次考试的数学成绩(x)和物理成绩(y),绘制成如图散点图:

    根据散点图可以看出y与x之间有线性相关关系,但图中有两个异常点A,B.经调查得知,A考生由于重感冒导致物理考试发挥失常,B考生因故未能参加物理考试.为了使分析结果更科学准确,剔除这两组数据后,对剩下的数据作处理,得到一些统计的值:,,,,,其中分别表示这50名考生的数学成绩、物理成绩,,2,…,50,y与x的相关系数.
    (1)若不剔除A,B两名考生的数据,用52组数据作回归分析,设此时y与x的相关系数为.试判断与r的大小关系(不必说明理由);
    (2)求y关于x的线性回归方程(系数精确到0.01),并估计如果B考生加了这次物理考试(已知B考生的数学成绩为125分),物理成绩是多少?(精确到0.1)
    附:线性回归方程中:.







    【例3】秋天的第一杯奶茶是一个网络词汇,最早出自四川达州一位当地民警之口,民警用“秋天的第一杯奶茶”顺利救下一名女孩,由此而火爆全网.后来很多人开始在秋天里买一杯奶茶送给自己在意的人.某奶茶店主记录了入秋后前7天每天售出的奶茶数量(单位:杯)
    如下:
    日期
    第一天
    第二天
    第三天
    第四天
    第五天
    第六天
    第七天
    日期代码
    1
    2
    3
    4
    5
    6
    7
    杯数
    4
    15
    22
    26
    29
    31
    32
    (1)请根据以上数据,绘制散点图,并根据散点图判断,与哪一个更适宜作为y关于x的回归方程模型(给出判断即可,不必说明理由);

    (2)建立y关于x的回归方程(结果保留1位小数),并根据建立的回归方程,试预测要到哪一天售出的奶茶才能超过35杯?
    (3)若每天售出至少25杯即可盈利,则从第一天至第七天中任选三天,记随机变量X表示盈利的天数,求随机变量X的分布列.
    参考公式和数据:其中
    回归直线方程中,






    22.7
    1.2
    759
    235.1
    13.2
    8.2


    【例4】某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.某研究小组为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据,其中和分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,计算得,,,.作散点图发现,除了明显偏离比较大的两个样本点,外,其它样本点大致分布在一条直线附近,为了减少误差,该研究小组剔除了这两个样本点,重新抽样补充了两个偏离比较小的样本点,.
    (1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);
    (2)建立地块的植物覆盖面积x(单位:公顷)和这种野生动物的数量y的线性回归方程;
    (3)经过进一步治理,如果每个地块的植物覆盖面积增加1公顷,预测该地区这种野生动物增加的数量.
    参考公式:线性回归方程,其中,.

















    【例5】移动物联网广泛应用于生产制造、公共服务、个人消费等领域.截至2022年底,我国移动物联网连接数达18.45亿户,成为全球主要经济体中首个实现“物超人”的国家.右图是2018-2022年移动物联网连接数W与年份代码t的散点图,其中年份2018-2022对应的t分别为1~5.

    (1)根据散点图推断两个变量是否线性相关.计算样本相关系数(精确到0.01),并推断它们的相关程度;
    (2)(i)假设变量x与变量Y的n对观测数据为(x1,y1),(x2,y2),…,(xn,yn),两个变量满足一元线性回归模型  (随机误差).请推导:当随机误差平方和Q=取得最小值时,参数b的最小二乘估计.
    (ii)令变量,则变量x与变量Y满足一元线性回归模型利用(i)中结论求y关于x的经验回归方程,并预测2024年移动物联网连接数.
    附:样本相关系数,,,,










    【题型专练】
    1.温度作为环境因子,在种子的发芽过程中起着重要的作用.某研究性学习小组对某植物种子的发芽率y与环境平均温度x(℃)之间的关系进行研究,他们经过5次独立实验,得到如下统计数据:
    第n次
    1
    2
    3
    4
    5
    环境平均温度x/℃
    18
    19
    20
    21
    22
    种子发芽率y
    62%
    69%
    71%
    72%
    76%
    (1)根据散点图可以发现,变量y与x之间呈线性相关关系.如果在第6次实验时将环境平均温度控制在,试根据回归方程估计这次实验该植物种子的发芽率;
    (2)若从这5次实验中任意抽取3次,设种子发芽率超过70%的次数为X,求X的分布列与数学期望.
    参考公式:线性回归方程中,,.

    2.受社会对高素质人才不断扩大的需求和就业形势等多方面因素的影响,我国本科毕业生中考研人数在不断攀升,2021年考研人数是377万人,2022年考研人数为457万人,比上年增加80万人,有关机构估计2023年研究生报名人数将突破500万人.某省统计了该省五所大学2022年的本(专)科大学毕业生人数及考研人数(单位:千人),得到如下表格:

    A大学
    B大学
    C大学
    D大学
    E大学
    2022年毕业人数x(千人)
    7.8
    6.2
    4.6
    3.4
    3
    2022年考研人数y(千人)
    0.5
    0.4
    0.3
    0.2
    0.2
    (1)已知与具有较强的线性相关关系,求关于的线性回归方程;
    (2)假设该省对选择考研的大学生每人发放0.6万元的补贴.若A大学的2022年的毕业生中小常、小郭选择考研的概率分别为p、,该省对小常、小郭两人的考研补贴总金额的期望不超过0.96万元,求p的取值范围.
    参考公式:,.
    3.大坝是一座具有灌溉、防洪、发电、航运、养殖和游览等综合效益的大型水利枢纽工程.为预测渗压值和控制库水位,工程师在水库选取一支编号为的渗压计,随机收集个该渗压计管内水位和水库水位监测数据:
    样本号










    总和
    水库水位











    渗压计管内水位











    并计算得,,.
    (1)估计该水库中号渗压计管内平均水位与水库的平均水位;
    (2)求该水库号渗压计管内水位与水库水位的样本相关系数(精确到);
    (3)某天雨后工程师测量了水库水位,并得到水库的水位为.利用以上数据给出此时号渗压计管内水位的估计值.
    附:相关系数,,,.











    4.某剧场的座位数量是固定的,管理人员统计了最近在该剧场举办的五场表演的票价(单位:元)和上座率(上座人数与总座位数的比值)的数据,其中,并根据统计数据得到如下的散点图:

    (1)由散点图判断与哪个模型能更好地对与的关系进行拟合(给出判断即可,不必说明理由),并根据你的判断结果求回归方程;
    (2)根据(1)所求的回归方程,预测票价为多少时,剧场的门票收入最多.
    参考数据:,,;设,则,,;,,.
    参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:,.













    5.为了研究某种细菌随天数x变化的繁殖个数y,收集数据如下:
    天数x
    1
    2
    3
    4
    5
    6
    繁殖个数y
    6
    12
    25
    49
    95
    190

    (1)在图中作出繁殖个数y关于天数x变化的散点图,并由散点图判断(a,b为常数)与(,为常数,且,)哪一个适宜作为繁殖个数y关于天数x变化的回归方程类型?(给出判断即可,不必说明理由)
    (2)对于非线性回归方程(,为常数,且,),令,可以得到繁殖个数的对数z关于天数x具有线性关系及一些统计量的值.






    3.50
    62.83
    3.53
    17.50
    596.57
    12.09
    ①证明:“对于非线性回归方程,令,可以得到繁殖个数的对数z关于天数x具有线性关系(即,β,α为常数)”;
    ②根据(1)的判断结果及表中数据,建立y关于x的回归方程(系数保留2位小数).
    附:对于一组数据,,…,,其回归直线方程的斜率和截距的最小二乘估计分别为,.





    题型三:条件概率的计算及应用
    【例1】已知有一道有四个选项的单项选择题和一道有四个选项的多项选择题,小明知道每道多项选择题均有两个或三个正确选项.但根据得分规则:全部选对的得5分,部分选对的得2分,有选错的得0分.这样,小明在做多项选择题时,可能选择一个选项,也可能选择两个或三个选项,但不会选择四个选项.
    (1)如果小明不知道单项选择题的正确答案,就作随机猜测.已知小明知道单项选择题的正确答案和随机猜测的概率分别是、,在他做完单项选择题后,从卷面上看,在题答对的情况下,求他知道单项选择题正确答案的概率.
    (2)假设小明在做该道多项选择题时,基于已有的解题经验,他选择一个选项的概率为,选择两个选项的概率为,选择三个选项的概率为.已知该道多项选择题只有两个正确选项,小明完全不知道四个选项的正误,只好根据自己的经验随机选择.记表示小明做完该道多项选择题后所得的分数.求:
    (i);
    (ii)的分布列及数学期望.
    【例2】年月日全国各地放开对新冠疫情的管控,在强大的祖国庇护下平稳抗疫三年的中国人民迎来了与新冠变异毒株奥密克戎的首次正面交锋.某市为了更好的了解全体中小学生感染新冠感冒后的情况,以便及时补充医疗资源.从全市中小学生中随机抽取了名抗原检测为阳性的中小学生监测其健康状况,名中小学生感染奥密克戎后的疼痛指数为,并以此为样本得到了如下图所示的表格:
    疼痛指数



    人数(人)



    名称
    无症状感染者
    轻症感染者
    重症感染者
    其中轻症感染者和重症感染者统称为有症状感染者.
    (1)统计学中常用表示在事件发生的条件下事件发生的似然比.现从样本中随机抽取名学生,记事件:该名学生为有症状感染者,事件:该名学生为重症感染者,求似然比的值;
    (2)若该市所有抗原检测为阳性的中小学生的疼痛指数近似的服从正态分布,且.若从该市众多抗原检测为阳性的中小学生中随机抽取名,设这名学生中轻症感染者人数为,求的分布列及数学期望.
    【例3】人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为(先验概率).
    (1)求首次试验结束的概率;
    (2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.
    ①求选到的袋子为甲袋的概率,
    ②将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案;方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.





    【例4】某市正在创建全国文明城市,学校号召师生利用周末从事创城志愿活动.高三(1)班一组有男生4人,女生2人,现随机选取2人作为志愿者参加活动,志愿活动共有交通协管员、创建宜传员、文明监督员三项可供选择.每名女生至多从中选择参加2项活动,且选择参加1项或2项的可能性均为;每名男生至少从中选择参加2项活动,且选择参加2项或3项的可能性也均为.每人每参加1项活动可获得综合评价10分,选择参加几项活动彼此互不彩响,求
    (1)在有女生参加活动的条件下,恰有一名女生的概率;
    (2)记随机选取的两人得分之和为X,求X的期望.




    【例5】一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:

    不够良好
    良好
    病例组
    40
    60
    对照组
    10
    90
    (1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?
    (2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.与的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.
    (ⅰ)证明:;
    (ⅱ)利用该调查数据,给出的估计值,并利用(ⅰ)的结果给出R的估计值.
    附,

    0.050
    0.010
    0.001
    k
    3.841
    6.635
    10.828


    【题型专练】
    1.为弘扬体育精神,营造校园体育氛围,某校组织“青春杯”3V3篮球比赛,甲、乙两队进入决赛.规定:先累计胜两场者为冠军,一场比赛中犯规4次以上的球员在该场比赛结束后,将不能参加后面场次的比赛.在规则允许的情况下,甲队中球员都会参赛,他上场与不上场甲队一场比赛获胜的概率分别为和,且每场比赛中犯规4次以上的概率为.
    (1)求甲队第二场比赛获胜的概率;
    (2)用表示比赛结束时比赛场数,求的期望;
    (3)已知球员在第一场比赛中犯规4次以上,求甲队比赛获胜的概率.
    2.有研究显示,人体内某部位的直径约的结节约有0.2%的可能性会在1年内发展为恶性肿瘤.某医院引进一台检测设备,可以通过无创的血液检测,估计患者体内直径约的结节是否会在1年内发展为恶性肿瘤,若检测结果为阳性,则提示该结节会在1年内发展为恶性肿瘤,若检测结果为阴性,则提示该结节不会在1年内发展为恶性肿瘤.这种检测的准确率为85%,即一个会在1年内发展为恶性肿瘤的患者有85%的可能性被检出阳性,一个不会在1年内发展为恶性肿瘤的患者有85%的可能性被检出阴性.患者甲被检查出体内长了一个直径约的结节,他做了该项无创血液检测.
    (1)求患者甲检查结果为阴性的概率;
    (2)若患者甲的检查结果为阴性,求他的这个结节在1年内发展为恶性肿瘤的概率(结果保留5位小数);
    (3)医院为每位参加该项检查的患者缴纳200元保险费,对于检测结果为阴性,但在1年内发展为恶性肿瘤的患者,保险公司赔付该患者20万元,若每年缴纳保险费的患者有1000人,请估计保险公司每年在这个项目上的收益.




    3.某学校为了增进全体教职工对党史知识的了解,组织开展党史知识竞赛活动并以支部为单位参加比赛.现有两组党史题目放在甲、乙两个纸箱中,甲箱有个选择题和个填空题,乙箱中有个选择题和个填空题,比赛中要求每个支部在甲或乙两个纸箱中随机抽取两题作答.每个支部先抽取一题作答,答完后题目不放回纸箱中,再抽取第二题作答,两题答题结束后,再将这两个题目放回原纸箱中.
    (1)如果第一支部从乙箱中抽取了个题目,求第题抽到的是填空题的概率;
    (2)若第二支部从甲箱中抽取了个题目,答题结束后错将题目放入了乙箱中,接着第三支部答题,第三支部抽取第一题时,从乙箱中抽取了题目.求第三支部从乙箱中取出的这个题目是选择题的概率.








    题型四:离散型随机变量分布列,期望及方差
    【例1】某市教育行政部门为开展普及法律常识的宣传教育活动,增强学生的法律意识,提高自身保护能力,在全市中小学生范围内,组织了一次法律常识知识竞赛(满分100分),现从所有参赛学生的竞赛成绩中随机抽取200份,经统计,这200份成绩全部介于之间,将数据按照,,……,分成七组,得到如下频数分布表:
    竞赛成绩(单位:分)







    人数(单位:人)
    6
    14
    30
    74
    42
    23
    11
    (1)试估计该市竞赛成绩的平均分(同一组中的数据用该组区间的中点值作代表)和第80百分位数(保留一位小数);
    (2)以样本频率值作为概率的估计值,若从该市所有参与竞赛的学生中,随机抽取3名学生进行座谈,设抽到60分及以上的学生人数为,求的分布列和数学期望.






    【例2】在节日里为了促销各大商场八仙过海各显神通,推出了花样繁多的促销活动,某大超市为了拉升节日的喜庆气氛和提升销售业绩,举行了购物抽奖促销活动,购物满500元可获得一次抽奖机会,抽奖方法如下:在盒子里放着除颜色外其他均相同的5个小球(红球和黑球各1个,白球3个),不放回地摸球,每次摸1球,摸到黑球就停止摸奖,摸到红球奖励40元,摸到白球奖励10元,摸到黑球不奖励.
    (1)求1名顾客摸球3次停止摸奖的概率;
    (2)记X为1名顾客摸奖获得的奖金数额,求随机变量X的分布列及数学期望.





    【例3】为普及航天知识,某航天科技体验馆开展了一项“摸球过关”领取航天纪念品的游戏,规则如下:不透明的口袋中有3个红球,2个白球,这些球除颜色外完全相同.参与者每一轮从口袋中一次性取出3个球,将其中的红球个数记为该轮得分,记录完得分后,将摸出的球全部放回袋中.当参与完成第轮游戏,且其前轮的累计得分恰好为时,游戏过关,可领取纪念品,同时游戏结束,否则继续参与游戏.若第3轮后仍未过关,则游戏也结束.每位参与者只能参加一次游戏.
    (1)求随机变量的分布列及数学期望;
    (2)若甲参加该项游戏,求甲能够领到纪念品的概率.


    【例4】在某次现场招聘会上,某公司计划从甲和乙两位应聘人员中录用一位,规定从6个问题中随机抽取3个问题作答.假设甲能答对的题目有4道,乙每道题目能答对的概率为,
    (1)求甲在第一次答错的情况下,第二次和第三次均答对的概率;
    (2)请从期望和方差的角度分析,甲、乙谁被录用的可能性更大?


    【例5】针对我国老龄化问题日益突出,人社部将推出延迟退休方案.某机构进行了网上调查,所有参与调查的人中,持“支持”“保留”和“不支持”态度的人数如下表所示.

    支持
    保留
    不支持
    50岁以下
    8000
    4000
    2000
    50岁以上(含50岁)
    1000
    2000
    3000
    (1)在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从持“不支持”态度的人中抽取了30人,求n的值;
    (2)在持“不支持”态度的人中,用分层抽样的方法抽取10人看成一个总体,从这10人中任意选取3人,求50岁以下人数的分布列和期望.



    【题型专练】
    1.兔年春节期间,烟花“加特林”因燃放效果酷炫在网上走红,随之而来的身价暴涨也引发关注,甚至还有买不到的网友用多支普通的手持燃放烟花自制“加特林”.据悉,有,,三家工厂可以各自独立生产烟花“加特林”,已知工厂生产的烟花“加特林”是正品同时工厂生产的烟花“加特林”也是正品的概率为,工厂生产的烟花“加特林”是正品同时工厂生产的烟花“加特林”不是正品的概率为,工厂生产的烟花“加特林”是正品同时工厂生产的烟花“加特林”不是正品的概率为.
    (1)分别求,,三家工厂各自独立生产出来的烟花“加特林”是正品的概率;
    (2),,三家工厂各自独立生产一件烟花“加特林”,记随机变量表示“三家工厂生产出来的正品的件数”,求的数学期望,它反映了什么实际意义?



    2.某校举行知识竞赛,最后一个名额要在A、B两名同学中产生,测试方案如下:A、B两名学生各自从给定的4个问题中随机抽取3个问题作答,在这4个问题中,已知A能正确作答其中的3个,B能正确作答每个问题的概率是,A、B两名同学作答问题相互独立.
    (1)求A、B恰好答对2个问题的概率;
    (2)设A答对的题数为X,B答对的题数为Y,若让你投票决定参赛选手,你会选择哪名学生,说明理由?



    3.某商场在2023年元旦举办了一场有奖销售活动,并且设置了一等奖、二等奖和三等奖,其中三等奖有4种奖品供选择,每种奖品都有若干个,凡是在该商场消费的人均可参与抽奖,消费者抽中三等奖后可从4种奖品中随机选择一种,每种奖品被选中的可能性相同,且每位消费者抽中三等奖的概率均为.
    (1)求甲、乙2位消费者均抽中三等奖且2人最终选择的奖品不一样的概率;
    (2)若有4位消费者均抽中三等奖,记三等奖的4种奖品中无人挑选的奖品种数为,求随机变量的分布列和数学期望.

    4.因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出两种拯救果树的方案,每种方案都需分两年实施.若实施方案一,预计第一年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为第一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计第一年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为第一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案第一年与第二年相互独立,令表示方案i实施两年后柑桔产量达到灾前产量的倍数.
    (1)写出的分布列;
    (2)实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?
    (3)不管哪种方案,如果实施两年后柑桔产量达不到、恰好达到、超过灾前产量,预计利润分别为10万元、15万元、20万元.问实施哪种方案的平均利润更大?



    题型五:二项分布解答题有关问题
    【例1】为了“锤炼党性修养,筑牢党性根基”,党员教师小A每天自觉登录“学习强国APP”,参加各种学习活动,同时热衷于参与四人赛.每局四人赛是由网络随机匹配四人进行比赛,每题回答正确得20分,第1个达到100分的比赛者获得第1名,赢得该局比赛,该局比赛结束.每天的四人赛共有30局,前2局是有效局,根据得分情况获得相应名次,从而得到相应的学习积分,第1局获得第1名的得3分,获得第2、3名的得2分,获得第4名的得1分;第2局获得第1名的得2分,获得第2、3、4名的得1分;后28局是无效局,无论获得什么名次,均不能获得学习积分.经统计,小A每天在第1局四人赛中获得3分、2分、1分的概率分别为,,,在第2局四人赛中获得2分、1分的概率分别为,.
    (1)设小A每天获得的得分为,求的分布列、数学期望和方差;
    (2)若小A每天赛完30局,设小A在每局四人赛中获得第1名从而赢得该局比赛的概率为,每局是否赢得比赛相互独立,请问在每天的30局四人赛中,小A贏得多少局的比赛概率最大?




    【例2】赌徒分金问题是概率论发展史上最著名的问题之一,1651年法国著名统计学家德·梅赫将它提请著名数学家帕斯卡解决,后来大数学家费马和惠更斯也参与了讨论并给出一般性推广.以下是赌徒分金问题的例子:
    (1)甲乙两个选手实力相当(即每人每局胜的概率都是),约定谁先赢4局,就获胜,并赢得奖金10000元,但在甲胜3局,乙胜2局时,比赛被迫中止,请计算甲最后获胜的概率和分到奖金的数学期望.
    (2)甲选手每局获胜的概率为,乙选手每局获胜的概率为,现在甲胜3局,乙胜2局,给出方案一:谁率先赢4局谁赢得奖金;方案二:谁率先赢5局谁赢得奖金,如果你是甲选手,你怎样选择比赛方案,并解释其理由.


    【题型专练】
    1.某会议室用盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为年以上的概率为,寿命为年以上的概率为.从使用之日起每满年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.
    (1)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换只灯泡的概率;
    (2)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;
    (3)当,时,求在第二次灯泡更换工作,至少需要更换只灯泡的概率.(结果保留两个有效数字)

    2.某工厂的某种产品成箱包装,每箱件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.
    (1)记件产品中恰有件不合格品的概率为,求的最大值点;
    (2)现对一箱产品检验了件,结果恰有件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为元,若有不合格品进入用户手中,则工厂要对每件不合格品支付元的赔偿费用.
    (i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;
    (ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?

    题型六:统计概率中的中位数,百分位数,均值计算问题
    【例1】为了了解高一学生的体能情况,某校抽取部分学生进行1分钟跳绳测试,将所得数据整理后,画出频率分布直方图(如图).图中从左到右各小矩形面积之比为2:4:17:15:9:3,第二小组频数为12.

    (1)第二小组的频率是多少?样本容量是多少?
    (2)通过频率分布直方图估计总体的平均数、中位数、众数.
    【例2】2022年4月16日,神舟十三号载人飞船返回舱成功着陆,航天员翟志刚、王亚平、叶光富完成在轨驻留半年的太空飞行任务,标志着中国空间站关键技术验证阶段圆满完成.并将进入建造阶段某地区为了激发人们对天文学的兴趣.开展了天文知识比赛,满分100分(95分及以上为认知程度高),结果认知程度高的有m人,这m人按年龄分成5组,其中第一组:,第二组:,第三组:第四组:,第五组:,得到如图所示的频率分布直方图,已知第一组有10人.

    (1)根据频率分布直方图,估计这m人的平均年龄和第80百分位数;
    (2)现从以上各组中用分层随机抽样的方法抽取20人,担任“党章党史”的宣传使者.
    ①若有甲(年龄36),乙(年龄42)两人已确定入选宜传使者,现计划从第四组和第五组被抽到的使者中,再随机抽取2名作为组长,求甲、乙两人至少有一人被选上的概率;
    ②若第四组宣传使者的年龄的平均数与方差分别为36和,第五组宣传使者的年龄的平均数与方差分别为42和1,据此估计这m人中35~45岁所有人的年龄的平均数和方差.
    【例3】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.
    (1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在之外的零件数,求及X的数学期望;
    (2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
    (ⅰ)试说明上述监控生产过程方法的合理性;
    (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
    9.95
    10.12
    9.96
    9.96
    10.01
    9.92
    9.98
    10.04
    10.26
    9.91
    10.13
    10.02
    9.22
    10.04
    10.05
    9.95
    经计算得,,其中xi为抽取的第i个零件的尺寸,.
    用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).
    附:若随机变量Z服从正态分布,则,,.










    【题型专练】
    1.某中学组织学生进行地理知识竞赛,随机抽取500名学生的成绩进行统计,将这500名学生成绩分成5组:[50,60),[60,70),[70,80),,[90,100],得到如图所示的频率分布直方图,若成等差数列,且成绩在区间内的人数为120.

    (1)求a,b,c的值;
    (2)估计这500名学生成绩的中位数和平均数(同一组中的数据用该组区间的中点值代替);
    (3)由成绩在区间[90,100]内的甲、乙等5名学生组成帮助小组,帮助成绩在区间[50,60)内的学生A,B,其中3人帮助A,余下的2人帮助B,求甲、乙都帮助A的概率.
    2.为了监控某种零件的一条生产线的生产过程,检验员每隔从该生产线上随机抽取一个零件,并测量其尺寸(单位:).下面是检验员在一天内依次抽取的16个零件的尺寸:
    抽取次序
    1
    2
    3
    4
    5
    6
    7
    8
    零件尺寸
    9.95
    10.12
    9.96
    9.96
    10.01
    9.92
    9.98
    10.04
    抽取次序
    9
    10
    11
    12
    13
    14
    15
    16
    零件尺寸
    10.26
    9.91
    10.13
    10.02
    9.22
    10.04
    10.05
    9.95
    经计算得,,
    ,其中为抽取的第个零件的尺寸,.
    (1)求的相关系数,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).
    (2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
    (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?
    (ⅱ)在之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到)附:样本的相关系数
    ,.




    3.互花米草是禾本科草本植物,其根系发达,具有极高的繁殖系数,对近海生态具有较大的危害.为尽快消除互花米草危害,2022年10月24日,市政府印发了《莆田市互花米草除治攻坚实施方案》,对全市除治攻坚行动做了具体部署.某研究小组为了解甲、乙两镇的互花米草根系分布深度情况,采用按比例分层抽样的方法抽取样本.已知甲镇的样本容量,样本平均数,样本方差;乙镇的样本容量,样本平均数,样本方差.
    (1)求由两镇样本组成的总样本的平均数及其方差;
    (2)为营造“广泛发动、全民参与”的浓厚氛围,甲、乙两镇决定进行一次“互花米草除治大练兵”比赛,两镇各派一支代表队参加,经抽签确定第一场在甲镇举行.比赛规则:
    每场比赛直至分出胜负为止,胜方得1分,负方得0分,下一场在负方举行,先得2分的代表队获胜,比赛结束.
    当比赛在甲镇举行时,甲镇代表队获胜的概率为,当比赛在乙镇举行时,甲镇代表队获胜的概率为.假设每场比赛结果相互独立.甲镇代表队的最终得分记为X,求.
    参考数据:.




    题型七:正态分布在解答题中的应用
    【例1】某国家网球队为了预选2024年奥运会的参赛选手,预计在国家队选拔一批队员做特训.选拔过程中,记录了某队员的40局接球成绩,每局发100个球,该队员每接球成功得1分,否则得0分,且每局结果相互独立,得到如图所示的频率分布直方图.

    (1)结合直方图,估算该队员40局接球成绩的平均分(同一组数据用该组区间的中点值作代表);
    (2)若该队员的接球训练成绩X近似服从正态分布,其中近似为样本平均数,求的值;
    (3)为了营造竞技氛围,队员间相互比赛.一局比赛中发球方连续发100个球,若接球方得分达到80分,则接球方获胜,否则发球方获胜.若有人获胜达3局,则比赛结束,记比赛的局数为Y.以频率分布直方图中该队员获胜的频率作为概率,求均值.
    参考数据:若随机变量,则,,.










    【例2】某单位为了解职工对垃圾回收知识的重视情况,对本单位的200名职工进行考核,然后通过随机抽样抽取其中的50名,统计其考核成绩(单位;分),制成如图所示的频率分布直方图.

    (1)求这50名职工考核成绩的平均数(同一组中的数据用该组区间的中点值为代表)及中位数(精确到0.01);
    (2)若该单位职工的考核成绩服从正态分布,其中“近似为50名职工考核成绩的平均数近似为样本方差,经计算得,利用该正态分布,估计该单位200名职工考核成绩高于90.06分的有多少名?(结果四舍五入保留整数.)
    附参考数据与公式:,,则,,.













    【题型专练】
    1.某工厂一台设备生产一种特定零件,工厂为了解该设备的生产情况,随机抽检了该设备在一个生产周期中的100件产品的关键指标(单位:),经统计得到下面的频率分布直方图:

    (1)由频率分布直方图估计抽检样本关键指标的平均数和方差.(用每组的中点代表该组的均值)
    (2)已知这台设备正常状态下生产零件的关键指标服从正态分布,用直方图的平均数估计值作为的估计值,用直方图的标准差估计值s作为估计值.
    (i)为了监控该设备的生产过程,每个生产周期中都要随机抽测10个零件的关键指标,如果关键指标出现了之外的零件,就认为生产过程可能出现了异常,需停止生产并检查设备.下面是某个生产周期中抽测的10个零件的关键指标:
    0.8
    1.2
    0.95
    1.01
    1.23
    1.12
    1.33
    0.97
    1.21
    0.83
    利用和判断该生产周期是否需停止生产并检查设备.
    (ii)若设备状态正常,记X表示一个生产周期内抽取的10个零件关键指标在之外的零件个数,求及X的数学期望.
    参考公式:直方图的方差,其中为各区间的中点,为各组的频率.
    参考数据:若随机变量X服从正态分布,则,,,,.





    题型八:统计概率中与数列有关的解答题
    【例1】2022年12月18日,第二十二届男足世界杯决赛在梅西率领的阿根廷队与姆巴佩率领的法国队之间展开,法国队在上半场落后两球的情况下,下半场连进两球,2比2战平进入加时赛,加时赛两队各进一球(比分3∶3)再次战平,在随后的点球大战中,阿根廷队发挥出色,最终赢得了比赛的胜利,时隔36年再次成功夺得世界杯冠军,梅西如愿以偿,成功捧起大力神杯.
    (1)法国队与阿根廷队实力相当,在比赛前很难预测谁胜谁负.赛前有3人对比赛最终结果进行了预测,假设每人预测正确的概率均为,求预测正确的人数X的分布列和期望;
    (2)足球的传接配合非常重要,传接球训练也是平常训练的重要项目,梅西和其他4名队友在某次传接球的训练中,假设球从梅西脚下开始,等可能地随机传向另外4人中的1人,接球者接到球后再等可能地随机传向另外4人中的1人,如此不停地传下去,假设传出的球都能接住,记第n次传球之前球在梅西脚下的概率为,求.




    【例2】2021年5月12日,2022北京冬奥会和冬残奥会吉祥物“冰墩墩”、“雪容融”亮相上海展览中心.为了庆祝吉祥物在上海的亮相,某商场举办了赢取冰墩墩、雪容融吉祥物挂件答题活动.为了提高活动的参与度,计划有的人只能赢取冰墩墩挂件,另外的人既能赢取冰墩墩挂件又能赢取雪容融挂件,每位顾客若只能赢取冰墩墩挂件,则记1分,若既能赢取冰墩墩挂件又能赢取雪容融挂件,则记2分,假设每位顾客能赢取冰墩墩挂件和赢取雪容融挂件相互独立,视频率为概率.
    (1)从顾客中随机抽取3人,记这3人的合计得分为X,求X的分布列和数学期望;
    (2)从顾客中随机抽取人,记这人的合计得分恰为分的概率为,求






    【题型专练】
    1.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n次这样的操作,记甲口袋中黑球个数为,恰有2个黑球的概率为,恰有1个黑球的概率为.
    (1)求p1,q1和p2,q2;
    (2)求与的递推关系式和的数学期望(用 n表示) .





    2.为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.
    (1)求的分布列;
    (2)若甲药、乙药在试验开始时都赋予4分,表示“甲药的累计得分为时,最终认为甲药比乙药更有效”的概率,则,,,其中,,.假设,.
    (i)证明:为等比数列;
    (ii)求,并根据的值解释这种试验方案的合理性.




    题型九:统计概率中的最值范围问题
    【例1】已知甲、乙两所体校都设有三个考试科目:足球、长跑、跳远.若小明报考甲体校,其每个科目通过的概率均为,若小明报考乙体校,则其足球、长跑、跳远三个科目通过的概率依次为,,,其中,且每个科目是否通过相互独立.
    (1)若,表示事件“小明报考甲体校时恰好通过个科目”,表示事件“小明报考乙体校时至多通过个科目”,求,;
    (2)若小明报考甲体校相比报考乙体校,通过的科目数的期望值更大,求的取值范围.






    【例2】某小区有居民2000人,想通过验血的方法筛查出乙肝病毒携带者,为此需对小区全体居民进行血液化验,假设携带病毒的居民占a%,若逐个化验需化验2000次.为减轻化验工作量,随机按n人一组进行分组,将各组n个人的血液混合在一起化验,若混合血样呈阴性,则这n个人的血样全部阴性;若混合血样呈阳性,说明其中至少有一人的血样呈阳性,就需对每个人再分别单独化验一次.假设每位居民的化验结果呈阴性还是阳性相互独立.
    (1)若,,试估算该小区化验的总次数;
    (2)若,每人单独化验一次花费10元,n个人混合化验一次花费元.求n为何值时,每位居民化验费用的数学期望最小.
    (注:当时,)






    【例3】一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,.
    (1)已知,求;
    (2)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程:的一个最小正实根,求证:当时,,当时,;
    (3)根据你的理解说明(2)问结论的实际含义.




    【例4】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
    最高气温
    [10,15)
    [15,20)
    [20,25)
    [25,30)
    [30,35)
    [35,40)
    天数
    2
    16
    36
    25
    7
    4
    以最高气温位于各区间的频率代替最高气温位于该区间的概率.
    (1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列.
    (2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?




    【题型专练】
    1.第19届亚运会将于2023年9月23日至10月8日在杭州举行,在保持原有40个大项目不变的前提下,增设了电子竞技和霹雳舞两个竞赛项目,国家体育总局为了深入了解各省在“电子竞技”和“霹雳舞”两个竞赛项目上的整体水平,随机选取了10个省进行研究,便于科学确定国家集训队队员,各省代表队人数如下表
    省代表队










    电子竞技
    45
    51
    27
    38
    57
    19
    26
    47
    34
    29
    霹雳舞
    26
    15
    44
    42
    32
    28
    56
    36
    48
    20
    (1)从这10支省代表队中随机抽取3支,在抽取的3支代表队参与电子竞技的人数均超过30人的条件下,求这3支代表队参与霹雳舞的人数均超过30人的概率;
    (2)若霹雳舞参与人数超过40人的代表队所在地可以成为国家队集训基地,现从这10支代表队中随机抽取4支,记X为选出代表队所在地可以成为国家队集训基地的个数,求X的分布列和数学期望;
    (3)某省代表队准备进行为期3个月的霹雳舞封闭训练,对太空步、空中定格、整体移动三个动作进行集训,且在集训中进行了多轮测试.规定:在一轮测试中,这3个动作至少有2个动作达到“优秀”,则该轮测试记为“优秀”,已知在一轮测试的3个动作中,甲队员每个动作达到“优秀”的概率均为,每个动作互不影响且每轮测试互不影响:如果甲队员在集训测试中获得“优秀”次数的平均值不低于9次,那么至少要进行多少轮测试?












    2.某企业准备投产一批特殊型号的产品,已知该种产品的总成本与产量的函数关系式为,该种产品的市场前景无法确定,有三种可能出现的情况,各种情形发生的概率及产品价格与产量的函数关系式如下表所示:
    市场情况
    概率
    价格与产量的函数关系式









    设分别表示市场情形好、中、差时的利润,随机变量,表示当产量为,而市场前景无法确定时的利润.试求:
    (1)分别求利润与产量的函数关系式;
    (2)当产量确定时,求期望;
    (3)试问产量取何值时,取得最大值.



    3.现有甲、乙两个项目,对甲项目每投资10万元,一年后利润是1.2万元、1.18万元、1.17万元的概率分别为;已知乙项目的利润与产品价格的调整有关,在每次调整中,价格下降的概率都是p(0 (1)求的概率分布和均值;
    (2)当时,求p的取值范围.

    4.工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人.现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,假设互不相等,且假定各人能否完成任务的事件相互独立.
    (1)如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率.若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?
    (2)若按某指定顺序派人,这三个人各自能完成任务的概率依次为,其中是的一个排列,求所需派出人员数目的分布列和均值(数字期望);
    (3)假定,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小.



    相关试卷

    导数解答题7大常考题型总结-【高考备考题型讲义】备战2024年高考数学常考题型分类讲义(新高考专用):

    这是一份导数解答题7大常考题型总结-【高考备考题型讲义】备战2024年高考数学常考题型分类讲义(新高考专用),文件包含2024年高三解答题导数7大常考题型总结解析版docx、2024年高三解答题导数7大常考题型总结原卷版docx等2份试卷配套教学资源,其中试卷共159页, 欢迎下载使用。

    圆锥曲线解答题6种常考题型专题训练-【高考备考题型讲义】备战2024年高考数学常考题型分类讲义(新高考专用):

    这是一份圆锥曲线解答题6种常考题型专题训练-【高考备考题型讲义】备战2024年高考数学常考题型分类讲义(新高考专用),文件包含2024新高考圆锥曲线解答题6种常考题型专题训练解析版docx、2024新高考圆锥曲线解答题6种常考题型专题训练原卷版docx等2份试卷配套教学资源,其中试卷共86页, 欢迎下载使用。

    数列解答题9种常考题型总结-【高考备考题型讲义】备战2024年高考数学常考题型分类讲义(新高考专用):

    这是一份数列解答题9种常考题型总结-【高考备考题型讲义】备战2024年高考数学常考题型分类讲义(新高考专用),文件包含2024年新高考解答题数列9种常考题型专题训练总结解析版docx、2024年新高考解答题数列9种常考题型专题训练总结原卷版docx等2份试卷配套教学资源,其中试卷共83页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        统计概率解答题9大常考题型专题训练-【高考备考题型讲义】备战2024年高考数学常考题型分类讲义(新高考专用)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map