![广东省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类第1页](http://www.enxinlong.com/img-preview/2/3/14640560/2/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类第2页](http://www.enxinlong.com/img-preview/2/3/14640560/2/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类第3页](http://www.enxinlong.com/img-preview/2/3/14640560/2/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省2021-2023三年中考数学真题分类汇编-01选择题知识点分类第1页](http://www.enxinlong.com/img-preview/2/3/14640560/3/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省2021-2023三年中考数学真题分类汇编-01选择题知识点分类第2页](http://www.enxinlong.com/img-preview/2/3/14640560/3/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省2021-2023三年中考数学真题分类汇编-01选择题知识点分类第3页](http://www.enxinlong.com/img-preview/2/3/14640560/3/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类第1页](http://www.enxinlong.com/img-preview/2/3/14640560/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类第2页](http://www.enxinlong.com/img-preview/2/3/14640560/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类第3页](http://www.enxinlong.com/img-preview/2/3/14640560/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省2021-2023三年中考数学真题分类汇编-02填空题知识点分类第1页](http://www.enxinlong.com/img-preview/2/3/14640560/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省2021-2023三年中考数学真题分类汇编-02填空题知识点分类第2页](http://www.enxinlong.com/img-preview/2/3/14640560/1/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省2021-2023三年中考数学真题分类汇编-02填空题知识点分类第3页](http://www.enxinlong.com/img-preview/2/3/14640560/1/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
广东省2021-2023三年中考数学真题分类汇编
展开这是一份广东省2021-2023三年中考数学真题分类汇编,文件包含广东省2021-2023三年中考数学真题分类汇编-03解答题提升题知识点分类doc、广东省2021-2023三年中考数学真题分类汇编-01选择题知识点分类doc、广东省2021-2023三年中考数学真题分类汇编-03解答题基础题知识点分类doc、广东省2021-2023三年中考数学真题分类汇编-02填空题知识点分类doc等4份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。
广东省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
一.二元一次方程组的应用(共1小题)
1.(2022•广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?
二.一次函数综合题(共1小题)
2.(2023•广东)综合运用
如图1,在平面直角坐标系中,正方形OABC的顶点A在x轴的正半轴上.如图2,将正方形OABC绕点O逆时针旋转,旋转角为α(0°<α<45°),AB交直线y=x于点E,BC交y轴于点F.
(1)当旋转角∠COF为多少度时,OE=OF;(直接写出结果,不要求写解答过程)
(2)若点A(4,3),求FC的长;
(3)如图3,对角线AC交y轴于点M,交直线y=x于点N,连接FN.将△OFN与△OCF的面积分别记为S1与S2.设S=S1﹣S2,AN=n,求S关于n的函数表达式.
三.二次函数的应用(共1小题)
3.(2021•广东)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.
(1)求猪肉粽和豆沙粽每盒的进价;
(2)设猪肉粽每盒售价x元(50≤x≤65),y表示该商家每天销售猪肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润.
四.二次函数综合题(共2小题)
4.(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.
(1)求该抛物线的解析式;
(2)求△CPQ面积的最大值,并求此时P点坐标.
5.(2021•广东)已知二次函数y=ax2+bx+c的图象过点(﹣1,0),且对任意实数x,都有4x﹣12≤ax2+bx+c≤2x2﹣8x+6.
(1)求该二次函数的解析式;
(2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.
五.正方形的性质(共1小题)
6.(2023•广东)综合与实践
主题:制作无盖正方体形纸盒.
素材:一张正方形纸板.
步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;
步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒.
猜想与证明:(1)直接写出纸板上∠ABC与纸盒上∠A1B1C1的大小关系;
(2)证明(1)中你发现的结论.
六.圆的综合题(共2小题)
7.(2023•广东)综合探究
如图1,在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A′.连接AA′交BD于点E,连接CA′.
(1)求证:AA'⊥CA';
(2)以点O为圆心,OE为半径作圆.
①如图2,⊙O与CD相切,求证:;
②如图3,⊙O与CA′相切,AD=1,求⊙O的面积.
8.(2021•广东)如图,在四边形ABCD中,AB∥CD,AB≠CD,∠ABC=90°,点E、F分别在线段BC、AD上,且EF∥CD,AB=AF,CD=DF.
(1)求证:CF⊥FB;
(2)求证:以AD为直径的圆与BC相切;
(3)若EF=2,∠DFE=120°,求△ADE的面积.
七.作图—复杂作图(共1小题)
9.(2023•广东)如图,在▱ABCD中,∠DAB=30°.
(1)实践与操作:用尺规作图法过点D作AB边上的高DE;(保留作图痕迹,不要求写作法)
(2)应用与计算:在(1)的条件下,AD=4,AB=6,求BE的长.
八.翻折变换(折叠问题)(共1小题)
10.(2021•广东)如图,边长为1的正方形ABCD中,点E为AD的中点.连接BE,将△ABE沿BE折叠得到△FBE,BF交AC于点G,求CG的长.
广东省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
参考答案与试题解析
一.二元一次方程组的应用(共1小题)
1.(2022•广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?
【答案】学生有7人,该书单价53元.
【解答】解:设学生有x人,该书单价y元,
根据题意得:,
解得:.
答:学生有7人,该书单价53元.
二.一次函数综合题(共1小题)
2.(2023•广东)综合运用
如图1,在平面直角坐标系中,正方形OABC的顶点A在x轴的正半轴上.如图2,将正方形OABC绕点O逆时针旋转,旋转角为α(0°<α<45°),AB交直线y=x于点E,BC交y轴于点F.
(1)当旋转角∠COF为多少度时,OE=OF;(直接写出结果,不要求写解答过程)
(2)若点A(4,3),求FC的长;
(3)如图3,对角线AC交y轴于点M,交直线y=x于点N,连接FN.将△OFN与△OCF的面积分别记为S1与S2.设S=S1﹣S2,AN=n,求S关于n的函数表达式.
【答案】(1)当旋转角为22.5°时,OE=OF;
(2)FC的长为;
(3)S关于n的函数表达式为.
【解答】解:(1)当OE=OF时,
在Rt△AOE和Rt△COF中,
,
∴Rt△AOE≌Rt△COF(HL),
∴∠AOE=∠COF(即∠AOE=旋转角),
∴2∠AOE=45°,
∴∠COF=∠AOE=22.5°,
∴当旋转角为22.5°时,OE=OF;
(2)过点A作AG⊥x轴于点G,则有AG=3,OG=4,
∴,
∵四边形OABC是正方形,
∴OC=OA=5,∠AOC=∠C=90°,
又∵∠COF+∠FOA=90°,∠AOG+∠FOA=90°,
∴∠COG=∠GOA,
∴Rt△AOG∽Rt△FOC,
∴,
∴,
∴FC的长为;
(3)过点N作直线PQ⊥BC于点P,交OA于点Q,
∵四边形OABC是正方形,
∴∠BCA=∠OCA=45°,BC∥OA,
又∠FON=45°,
∴∠FCN=∠FON=45°,
∴F、C、O、N四点共圆,
∴∠OFN=∠OCA=45°,
∴∠OFN=∠FON=45°,
∴△FON是等腰直角三角形,
∴FN=NO,∠FNO=90°,
∴∠FNP+∠ONQ=90°,
又∵∠NOQ+∠ONQ=90°,
∴∠NOQ=∠FNP,
∴△NOQ≌△FNP(AAS),
∴NP=OQ,FP=NQ,
∵四边形OQPC是矩形,
∴CP=OQ,OC=PQ,
∴,
=,
,
=,
=,
=,
∴,
又∵△ANQ为等腰直角三角形,
∴,
∴,
∴S关于n的函数表达式为.
三.二次函数的应用(共1小题)
3.(2021•广东)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.
(1)求猪肉粽和豆沙粽每盒的进价;
(2)设猪肉粽每盒售价x元(50≤x≤65),y表示该商家每天销售猪肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润.
【答案】(1)猪肉粽每盒进价40元,豆沙粽每盒进价30元;(2)y关于x的函数解析式为y=﹣2x2+280x﹣8000(50≤x≤65),且最大利润为1750元.
【解答】解:(1)设猪肉粽每盒进价a元,则豆沙粽每盒进价(a﹣10)元,
则,
解得:a=40,经检验a=40是方程的解,
∴猪肉粽每盒进价40元,豆沙粽每盒进价30元,
(2)由题意得,当x=50时,每天可售出100盒,
当猪肉粽每盒售价x元(50≤x≤65)时,每天可售[100﹣2(x﹣50)]盒,
∴y=x[100﹣2(x﹣50)]﹣40×[100﹣2(x﹣50)]=﹣2x2+280x﹣8000,
配方,得:y=﹣2(x﹣70)2+1800,
∵x<70时,y随x的增大而增大,
∴当x=65时,y取最大值,最大值为:﹣2×(65﹣70)2+1800=1750(元).
答:y关于x的函数解析式为y=﹣2x2+280x﹣8000(50≤x≤65),且最大利润为1750元.
四.二次函数综合题(共2小题)
4.(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.
(1)求该抛物线的解析式;
(2)求△CPQ面积的最大值,并求此时P点坐标.
【答案】(1)y=x2+2x﹣3;
(2)△CPQ面积的最大值为2,此时P点坐标为(﹣1,0).
【解答】(1)∵抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,
∴B(﹣3,0),
∴,
解得,
∴抛物线的解析式为y=x2+2x﹣3;
(2)过Q作QE⊥x轴于E,过C作CF⊥x轴于F,
设P(m,0),则PA=1﹣m,
∵y=x2+2x﹣3=(x+1)2﹣4,
∴C(﹣1,﹣4),
∴CF=4,
∵PQ∥BC,
∴△PQA∽△BCA,
∴,即,
∴QE=1﹣m,
∴S△CPQ=S△PCA﹣S△PQA
=PA•CF﹣PA•QE
=(1﹣m)×4﹣(1﹣m)(1﹣m)
=﹣(m+1)2+2,
∵﹣3≤m≤1,
∴当m=﹣1时 S△CPQ有最大值2,
∴△CPQ面积的最大值为2,此时P点坐标为(﹣1,0).
5.(2021•广东)已知二次函数y=ax2+bx+c的图象过点(﹣1,0),且对任意实数x,都有4x﹣12≤ax2+bx+c≤2x2﹣8x+6.
(1)求该二次函数的解析式;
(2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.
【答案】(1)二次函数解析式为y=x2﹣2x﹣3;
(2)存在,N点的坐标为(1,0)或(5,0)或(,0)或(﹣2﹣,0).
【解答】解:(1)不妨令4x﹣12=2x2﹣8x+6,解得:x1=x2=3,
当x=3时,4x﹣12=2x2﹣8x+6=0.
∴y=ax2+bx+c必过(3,0),
又∵y=ax2+bx+c过(﹣1,0),
∴,解得:,
∴y=ax2﹣2ax﹣3a,
又∵ax2﹣2ax﹣3a≥4x﹣12,
∴ax2﹣2ax﹣3a﹣4x+12≥0,
整理得:ax2﹣2ax﹣4x+12﹣3a≥0,
∴a>0且Δ=0,
∴(2a+4)2﹣4a(12﹣3a)=0,
∴(a﹣1)2=0,
∴a=1,b=﹣2,c=﹣3.
∴该二次函数解析式为y=x2﹣2x﹣3.
(2)存在,理由如下:
令y=x2﹣2x﹣3中y=0,得x=3,则A点坐标为(3,0);
令x=0,得y=﹣3,则点C坐标为(0,﹣3).
设点M坐标为(m,m2﹣2m﹣3),N(n,0),
根据平行四边形对角线性质以及中点坐标公式可得:
①当AC为对角线时,,
即,解得:m1=0(舍去),m2=2,
∴n=1,即N1(1,0).
②当AM为对角线时,,
即,解得:m1=0(舍去),m2=2,
∴n=5,即N2(5,0).
③当AN为对角线时,,
即,解得:m1=1+,m2=1﹣,
∴n=或﹣2﹣,
∴N3(,0),N4(﹣2﹣,0).
综上所述,N点坐标为(1,0)或(5,0)或(,0)或(﹣2﹣,0).
五.正方形的性质(共1小题)
6.(2023•广东)综合与实践
主题:制作无盖正方体形纸盒.
素材:一张正方形纸板.
步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;
步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒.
猜想与证明:(1)直接写出纸板上∠ABC与纸盒上∠A1B1C1的大小关系;
(2)证明(1)中你发现的结论.
【答案】(1)∠ABC=∠A1B1C1;
(2)证明过程见解答.
【解答】解:(1)∠ABC=∠A1B1C1;
(2)∵A1B1为正方形对角线,
∴∠A1B1C1=45°,
设每个方格的边长为1,
则AB==,
AC=BC==,
∵AC2+BC2=AB2,
∴由勾股定理的逆定理得△ABC是等腰直角三角形,
∴∠ABC=45°,
∴∠ABC=∠A1B1C1.
六.圆的综合题(共2小题)
7.(2023•广东)综合探究
如图1,在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A′.连接AA′交BD于点E,连接CA′.
(1)求证:AA'⊥CA';
(2)以点O为圆心,OE为半径作圆.
①如图2,⊙O与CD相切,求证:;
②如图3,⊙O与CA′相切,AD=1,求⊙O的面积.
【答案】(1)证明过程详见解答;
(2)①证明过程详见解答;
②.
【解答】(1)证明:∵点A关于BD的对称点为A′,
∴AE=A′E,AA′⊥BD,
∵四边形ABCD是矩形,
∴OA=OC,
∴OE∥A′C,
∴AA′⊥CA′;
(2)①证明:如图2,
设CD⊙O与CD切于点F,连接OF,并延长交AB于点G,
∴OF⊥CD,OF=OE,
∵四边形ABCD是矩形,
∴OB=OD=BD,AB∥CD,AC=BD,OA=AC,
∴OG⊥AB,∠FDO=∠BOG,OA=OB,
∴∠GAO=∠GBO,
∵∠DOF=∠BOG,
∴△DOF≌△BOG(ASA),
∴OG=OF,
∴OG=OE,
由(1)知:AA′⊥BD,
∴∠EAO=∠GAO,
∵∠EAB+∠GBO=90°,
∴∠EAO+∠GAO+∠GBO=90°,
∴3∠EAO=90°,
∴∠EAO=30°,
由(1)知:AA′⊥CA′,
∴tan∠EAO=,
∴tan30°=,
∴;
②解:如图3,
设⊙O切CA′于点H,连接OH,
∴OH⊥CA′,
由(1)知:AA′⊥CA′,AA′⊥CA′,OA=OC,
∴OH∥AA′,OE∥CA′,
∴△COH∽△CAA′,△AOE∽△ACA′,
∴,
∴AA′=2OH,CA′=2OE,
∴AA′=CA′,
∴∠A′AC=∠A′CA=45°,
∴∠AOE=∠ACA′=45°,
∴AE=OE,OD=OA=AE,
设AE=OE=x,则OD=OA=,
∴DE=OD﹣OE=()x,
在Rt△ADE中,由勾股定理得,
=1,
∴x2=,
∴S⊙O=π•OE2=.
8.(2021•广东)如图,在四边形ABCD中,AB∥CD,AB≠CD,∠ABC=90°,点E、F分别在线段BC、AD上,且EF∥CD,AB=AF,CD=DF.
(1)求证:CF⊥FB;
(2)求证:以AD为直径的圆与BC相切;
(3)若EF=2,∠DFE=120°,求△ADE的面积.
【答案】(1)(2)证明见解答;(3)
【解答】(1)证明:∵CD=DF,
∴∠DCF=∠DFC,
∵EF∥CD,
∴∠DCF=∠EFC,
∴∠DFC=∠EFC,
∴∠DFE=2∠EFC,
∵AB=AF,
∴∠ABF=∠AFB,
∵CD∥EF,CD∥AB,
∴AB∥EF,
∴∠EFB=∠AFB,
∴∠AFE=2∠BFE,
∵∠AFE+∠DFE=180°,
∴2∠BFE+2∠EFC=180°,
∴∠BFE+∠EFC=90°,
∴∠BFC=90°,
∴CF⊥BF;
(2)证明:如图1,取AD的中点O,过点O作OH⊥BC于H,
∴∠OHC=90°=∠ABC,
∴OH∥AB,
∵AB∥CD,
∴OH∥AB∥CD,
∵AB∥CD,AB≠CD,
∴四边形ABCD是梯形,
∴点H是BC的中点,
∴OH=(AB+CD),
连接CO并延长交BA的延长线于G,
∴∠G=∠DCO,
∵∠AOG=∠DOC,OA=OD,
∴△AOG≌△DOC(AAS),
∴AG=CD,OC=OG,
∴OH是△BCG的中位线,
∴OH=BG=(AB+AG)=(AF+DF)=AD,
∵OH⊥BC,
∴以AD为直径的圆与BC相切;
(3)如图2,
由(1)知,∠DFE=2∠EFC,
∵∠DFE=120°,
∴∠CFE=60°,
在Rt△CEF中,EF=2,∠ECF=90°﹣∠CFE=30°,
∴CF=2EF=4,
∴CE==2,
∵AB∥EF∥CD,∠ABC=90°,
∴∠ECD=∠CEF=90°,
过点D作DM⊥EF,交EF的延长线于M,
∴∠M=90°,
∴∠M=∠ECD=∠CEF=90°,
∴四边形CEMD是矩形,
∴DM=CE=2,
过点A作AN⊥EF于N,
∴四边形ABEN是矩形,
∴AN=BE,
由(1)知,∠CFB=90°,
∵∠CFE=60°,
∴∠BFE=30°,
在Rt△BEF中,EF=2,
∴BE=EF•tan30°=,
∴AN=,
∴S△ADE=S△AEF+S△DEF
=EF•AN+EF•DM
=EF(AN+DM)
=×2×(+2)
=.
七.作图—复杂作图(共1小题)
9.(2023•广东)如图,在▱ABCD中,∠DAB=30°.
(1)实践与操作:用尺规作图法过点D作AB边上的高DE;(保留作图痕迹,不要求写作法)
(2)应用与计算:在(1)的条件下,AD=4,AB=6,求BE的长.
【答案】(1)见作图;(2)6﹣2.
【解答】解:(1)如图E即为所求作的点;
(2)∵cos∠DAB=,
∴AE=AD•cos30°=4×=2,
∴BE=AB﹣AE=6﹣2.
八.翻折变换(折叠问题)(共1小题)
10.(2021•广东)如图,边长为1的正方形ABCD中,点E为AD的中点.连接BE,将△ABE沿BE折叠得到△FBE,BF交AC于点G,求CG的长.
【答案】.
【解答】解:延长BF交CD于H,连接EH.
∵四边形ABCD是正方形,
∴AB∥CD,∠D=∠DAB=90°,AD=CD=AB=1,
∴AC===,
由翻折的性质可知,AE=EF,∠EAB=∠EFB=90°,∠AEB=∠FEB,
∵点E是AD的中点,
∴AE=DE=EF,
∵∠D=∠EFH=90°,
在Rt△EHD和Rt△EHF中,
,
∴Rt△EHD≌Rt△EHF(HL),
∴∠DEH=∠FEH,
∵∠DEF+∠AEF=180°,
∴2∠DEH+2∠AEB=180°,
∴∠DEH+∠AEB=90°,
∵∠AEB+∠ABE=90°,
∴∠DEH=∠ABE,
∴△EDH∽△BAE,
∴==,
∴DH=,CH=,
∵CH∥AB,
∴==,
∴CG=AC=.
相关试卷
这是一份广东省广州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共36页。试卷主要包含了的图象上,x+2m+3,为直线l在第二象限的点等内容,欢迎下载使用。
这是一份广东省广州市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共10页。试卷主要包含了已知a>3,代数式,解方程组,解方程,+a2,解不等式等内容,欢迎下载使用。
这是一份广东省广州市2021-2023三年中考数学真题分类汇编-02填空题知识点分类,共17页。试卷主要包含了分解因式等内容,欢迎下载使用。