![中考数学二轮精品专题复习 锐角三角函数(解答题一)第1页](http://www.enxinlong.com/img-preview/2/3/14648606/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![中考数学二轮精品专题复习 锐角三角函数(解答题一)第2页](http://www.enxinlong.com/img-preview/2/3/14648606/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![中考数学二轮精品专题复习 锐角三角函数(解答题一)第3页](http://www.enxinlong.com/img-preview/2/3/14648606/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:中考数学二轮精品专题复习
- 中考数学二轮精品专题复习 科学计数法 试卷 1 次下载
- 中考数学二轮精品专题复习 锐角三角函数(解答题二) 试卷 1 次下载
- 中考数学二轮精品专题复习 三角形(解答题) 试卷 1 次下载
- 中考数学二轮精品专题复习 三角形(填空题) 试卷 2 次下载
- 中考数学二轮精品专题复习 三角形(选择题) 试卷 1 次下载
中考数学二轮精品专题复习 锐角三角函数(解答题一)
展开
这是一份中考数学二轮精品专题复习 锐角三角函数(解答题一),共48页。
2023年中考数学真题知识点汇编之《锐角三角函数(解答题一)》
一.解答题(共25小题)
1.(2023•大连)如图所示是消防员攀爬云梯到小明家的场景.已知AE⊥BE,BC⊥BE,CD∥BE,AC=10.4m,BC=1.26m,点A关于点C的仰角为70°,则楼AE的高度为多少m?
(结果保留整数.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)
2.(2023•贵州)贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A为起点,沿途修建AB、CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC为50m.索道AB与AF的夹角为15°,CD与水平线夹角为45°,A、B两处的水平距离AE为576m,DF⊥AF,垂足为点F.(图中所有点都在同一平面内,点A、E、F在同一水平线上)
(1)求索道AB的长(结果精确到1m);
(2)求水平距离AF的长(结果精确到1m).
(参考数据:sin15°≈0.25,cos15°≈0.96,tan15°≈0.26,2≈1.41)
3.(2023•徐州)徐州电视塔为我市的标志性建筑之一,如图,为了测量其高度,小明在云龙公园的点C处,用测角仪测得塔顶A的仰角∠AFE=36°,他在平地上沿正对电视塔的方向后退至点D处,测得塔顶A的仰角∠AGE=30°.若测角仪距地面的高度FC=GD=1.6m,CD=70m,求电视塔的高度AB(精确到0.1m).(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin30°≈0.50,cos30°≈0.87,tan30°≈0.58)
4.(2023•湘潭)问题情境:筒车是我国古代发明的一种水利灌溉工具,既经济又环保.明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理(如图①).假定在水流量稳定的情况下,筒车上的每一个盛水筒都按逆时针做匀速圆周运动,每旋转一周用时120秒.
问题设置:把筒车抽象为一个半径为r的⊙O.如图②,OM始终垂直于水平面,设筒车半径为2米.当t=0时,某盛水筒恰好位于水面A处,此时∠AOM=30°,经过95秒后该盛水筒运动到点B处.
问题解决:
(1)求该盛水筒从A处逆时针旋转到B处时,∠BOM的度数;
(2)求该盛水筒旋转至B处时,它到水面的距离.(结果精确到0.1米)(参考数据2≈1.414,3≈1.732)
5.(2023•常德)今年“五一”长假期间,小陈、小余同学和家长去沙滩公园游玩,坐在如图的椅子上休息时,小陈感觉很舒服,激发了她对这把椅子的好奇心,就想出个问题考考同学小余,小陈同学先测量,根据测量结果画出了图1的示意图(图2).在图2中,已知四边形ABCD是平行四边形,座板CD与地面MN平行,△EBC是等腰三角形且BC=CE,∠FBA=114.2°,靠背FC=57cm,支架AN=43cm,扶手的一部分BE=16.4cm.这时她问小余同学,你能算出靠背顶端F点距地面(MN)的高度是多少吗?请你帮小余同学算出结果(最后结果保留一位小数).(参考数据:sin65.8°=0.91,cos65.8°=0.41,tan65.8°=2.23)
6.(2023•辽宁)暑假期间,小明与小亮相约到某旅游风景区登山.需要登顶600m高的山峰,由山底A处先步行300m到达B处,再由B处乘坐登山缆车到达山顶D处.已知点A,B,D,E,F在同一平面内,山坡AB的坡角为30°,缆车行驶路线BD与水平面的夹角为53°(换乘登山缆车的时间忽略不计).
(1)求登山缆车上升的高度DE;
(2)若步行速度为30m/min,登山缆车的速度为60m/min,求从山底A处到达山顶D处大约需要多少分钟(结果精确到0.1min).
(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)
7.(2023•通辽)如图,一艘海轮位于灯塔P的北偏东72°方向,距离灯塔100nmile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东40°方向上的B处.这时,B处距离灯塔P有多远(结果取整数)?(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
8.(2023•内蒙古)为了增强学生体质、锤炼学生意志,某校组织一次定向越野拉练活动.如图,A点为出发点,途中设置两个检查点,分别为B点和C点,行进路线为A→B→C→A.B点在A点的南偏东25°方向32km处,C点在A点的北偏东80°方向,行进路线AB和BC所在直线的夹角∠ABC为45°.
(1)求行进路线BC和CA所在直线的夹角∠BCA的度数;
(2)求检查点B和C之间的距离(结果保留根号).
9.(2023•湖北)为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形ABCD,斜面坡度i=3:4是指坡面的铅直高度AF与水平宽度BF的比.已知斜坡CD长度为20米,∠C=18°,求斜坡AB的长.(结果精确到0.1米)(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
10.(2023•长沙)2023年5月30日9点31分,“神舟十六号”载人飞船在中国酒泉卫星发射中心点火发射,成功把景海鹏、桂海潮、朱杨柱三名航天员送入到中国空间站.如图,在发射的过程中,飞船从地面O处发射,当飞船到达A点时,从位于地面C处的雷达站测得AC的距离是8km,仰角为30°;10s后飞船到达B处,此时测得仰角为45°.
(1)求点A离地面的高度AO;
(2)求飞船从A处到B处的平均速度.(结果精确到0.1km/s,参考数据:3≈1.73)
11.(2023•张家界)“游张家界山水,逛七十二奇楼”成为今年旅游新特色.某数学兴趣小组用无人机测量奇楼AB的高度,测量方案如图:先将无人机垂直上升至距水平地面225m的P点,测得奇楼顶端A的俯角为15°,再将无人机沿水平方向飞行200m到达点Q,测得奇楼底端B的俯角为45°,求奇楼AB的高度.(结果精确到1m,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)
12.(2023•菏泽)无人机在实际生活中的应用越来越广泛.如图所示,某人利用无人机测量大楼的高度BC,无人机在空中点P处,测得点P距地面上A点80米,点A处的俯角为60°,楼顶C点处的俯角为30°,已知点A与大楼的距离AB为70米(点A,B,C,P在同一平面内),求大楼的高度BC(结果保留根号).
13.(2023•浙江)图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角范围内才能被识别),其示意图如图2,摄像头A的仰角、俯角均为15°,摄像头高度OA=160cm,识别的最远水平距离OB=150cm.
(1)身高208cm的小杜,头部高度为26cm,他站在离摄像头水平距离130cm的点C处,请问小杜最少需要下蹲多少厘米才能被识别?
(2)身高120cm的小若,头部高度为15cm,踮起脚尖可以增高3cm,但仍无法被识别,社区及时将摄像头的仰角、俯角都调整为20°(如图3),此时小若能被识别吗?请计算说明.
(精确到0.1cm,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
14.(2023•鄂州)鄂州市莲花山是国家4A级风景区,元明塔造型独特,是莲花山风景区的核心景点,深受全国各地旅游爱好者的青睐.今年端午节,景区将举行大型包粽子等节日庆祝活动.如图2,景区工作人员小明准备从元明塔的点G处挂一条大型竖直条幅到点E处,挂好后,小明进行实地测量,从元明塔底部F点沿水平方向步行30米到达自动扶梯底端A点,在A点用仪器测得条幅下端E的仰角为30°;接着他沿自动扶梯AD到达扶梯顶端D点,测得点A和点D的水平距离为15米,且tan∠DAB=43;然后他从D点又沿水平方向行走了45米到达C点,在C点测得条幅上端G的仰角为45°.(图上各点均在同一个平面内,且G,C,B共线,F,A,B共线,G、E、F共线,CD∥AB,GF⊥FB).
(1)求自动扶梯AD的长度;
(2)求大型条幅GE的长度.(结果保留根号)
15.(2023•河南)综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD为正方形,AB=30cm,顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线AM交BC于点H.经测量,点A距地面1.8m,到树EG的距离AF=11m,BH=20cm.求树EG的高度(结果精确到0.1m).
16.(2023•绥化)如图,直线MN和EF为河的两岸,且MN∥EF,为了测量河两岸之间的距离,某同学在河岸FE的B点测得∠CBE=30°,从B点沿河岸FE的方向走40米到达D点,测得∠CDE=45°.
(1)求河两岸之间的距离是多少米?(结果保留根号)
(2)若从D点继续沿DE的方向走(123+12)米到达P点.求tan∠CPE的值.
17.(2023•兰州)如图1是我国第一个以“龙”为主题的主题公园——“兰州龙源”、“兰州龙源”的“龙”字主题雕塑以紫铜铸造,如巨龙腾空,气势如虹,屹立在黄河北岸、某数学兴趣小组开展了测量“龙”字雕塑CD高度的实践活动,具体过程如下,如图2,“龙”字雕塑CD位于垂直地面的基座BC上,在平行于水平地面的A处测得∠BAC=38°,∠BAD=53°,AB=18m.求“龙”字雕塑CD的高度,(B,C,D三点共线,BD⊥AB,结果精确到0.1m)(参考数据:sin38°=0.62,cos38°=0.79,tan38°=0.78,sin53°=080,cos53°=0.60,tan53°=1.33)
18.(2023•广东)2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站.如图中的照片展示了中国空间站上机械臂的一种工作状态.当两臂AC=BC=10m,两臂夹角∠ACB=100°时,求A,B两点间的距离.(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)
19.(2023•聊城)东昌湖西岸的明珠大剧院,隔湖与远处的角楼、城门楼、龙堤、南关桥等景观遥相呼应.如图所示,城门楼B在角楼A的正东方向520m处,南关桥C在城门楼B的正南方向1200m处.在明珠大剧院P测得角楼A在北偏东68.2°方向,南关桥C在南偏东56.31°方向(点A,B,C,P四点在同一平面内),求明珠大剧院到龙堤BC的距离(结果精确到1m)
(参考数据:sin68,2°≈0.928,cos68.2°≈0.371,tan68.2°≈2.50,sin56.31°≈0.832,cos56.31°≈0.555,tan56.31°≈1.50)
20.(2023•郴州)某次军事演习中,一艘船以40km/h的速度向正东航行,在出发地A测得小岛C在它的北偏东60°方向,2小时后到达B处,浏得小岛C在它的北偏西45°方向,求该船在航行过程中与小岛C的最近距离(参考数据:2≈1.41,3≈1.73.结果精确到0.1km).
21.(2023•邵阳)我国航天事业捷报频传,2023年5月30日,被誉为“神箭”的长征二号F运载火箭托举神舟十六号载人飞船跃入苍穹,中国空间站应用与发展阶段首次载人发射任务取得圆满成功.如图,有一枚运载火箭从地面O处发射,当火箭到达P处时,地面A处的雷达站测得AP距离是5000m,仰角为23°,9s后,火箭直线到达Q处,此时地面A处雷达站测得Q处的仰角为45°,求火箭从P到Q处的平均速度(结果精确到1m/s).
(参考数据:sin23°≈0.39,cos23°≈0.92,tan23°≈0.42)
22.(2023•温州)根据背景素材,探索解决问题.
测算发射塔的高度
背景素材
某兴趣小组在一幢楼房窗口测算远处小山坡上发射塔的高度MN(如图1),他们通过自制的测倾仪(如图2)在A,B,C三个位置观测,测倾仪上的示数如图3所示.
经讨论,只需选择其中两个合适的位置,通过测量、换算就能计算发射塔的高度
问题解决
任务1
分析规划
选择两个观测位置:点 和点 .
获取数据
写出所选位置观测角的正切值,并量出观测点之间的图上距离.
任务2
推理计算
计算发射塔的图上高度MN.
任务3
换算高度
楼房实际宽度DE为12米,请通过测量换算发射塔的实际高度.
注:测量时,以答题纸上的图上距离为准,并精确到1mm.
23.(2023•广元)“一缕清风银叶转”,某市20台风机依次矗立在云遮雾绕的山脊之上,风叶转动,风能就能转换成电能,造福千家万户.某中学初三数学兴趣小组,为测量风叶的长度进行了实地测量.如图,三片风叶两两所成的角为120°,当其中一片风叶OB与塔干OD叠合时,在与塔底D水平距离为60米的E处,测得塔顶部O的仰角∠OED=45°,风叶OA的视角∠OEA=30°.
(1)已知α,β两角和的余弦公式为:cos(α+β)=cosαcosβ﹣sinαsinβ,请利用公式计算cos75°;
(2)求风叶OA的长度.
24.(2023•绍兴)图1是某款篮球架,图2是其示意图,立柱OA垂直地面OB,支架CD与OA交于点A,支架CG⊥CD交OA于点G,支架DE平行地面OB,篮筐EF与支架DE在同一直线上,OA=2.5米,AD=0.8米.∠AGC=32°.
(1)求∠GAC的度数;
(2)某运动员准备给篮筐挂上篮网,如果他站在凳子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)
25.(2023•随州)某校学生开展综合实践活动,测量某建筑物的高度AB,在建筑物附近有一斜坡,坡长CD=10米,坡角α=30°,小华在C处测得建筑物顶端A的仰角为60°,在D处测得建筑物顶端A的仰角为30°.(已知点A,B,C,D在同一平面内,B,C在同一水平线上)
(1)求点D到地面BC的距离;
(2)求该建筑物的高度AB.
2023年中考数学真题知识点汇编之《锐角三角函数(解答题一)》
参考答案与试题解析
一.解答题(共25小题)
1.(2023•大连)如图所示是消防员攀爬云梯到小明家的场景.已知AE⊥BE,BC⊥BE,CD∥BE,AC=10.4m,BC=1.26m,点A关于点C的仰角为70°,则楼AE的高度为多少m?
(结果保留整数.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)
【考点】解直角三角形的应用﹣仰角俯角问题.菁优网版权所有
【专题】解直角三角形及其应用;应用意识.
【分析】延长CD交AE于H,于是得到CH=BE,EH=BC=1.26m,解直角三角形即可得到结论.
【解答】解:延长CD交AE于H,
则CH=BE,EH=BC=1.26m,
在Rt△ACH中,AC=10.4m,∠ACH=70°,
∴AH=AC•sin70°=10.4×0.94≈9.78(m),
∴AE=AH+CH=9.78+1.26≈11(m),
答:楼AE的高度约为11m.
【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,正确地作出辅助线是解题的关键.
2.(2023•贵州)贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A为起点,沿途修建AB、CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC为50m.索道AB与AF的夹角为15°,CD与水平线夹角为45°,A、B两处的水平距离AE为576m,DF⊥AF,垂足为点F.(图中所有点都在同一平面内,点A、E、F在同一水平线上)
(1)求索道AB的长(结果精确到1m);
(2)求水平距离AF的长(结果精确到1m).
(参考数据:sin15°≈0.25,cos15°≈0.96,tan15°≈0.26,2≈1.41)
【考点】解直角三角形的应用.菁优网版权所有
【专题】解直角三角形及其应用;推理能力.
【分析】(1)通过解Rt△ABE可求得AB的长;
(2)延长BC交DF于G,证明四边形BEFG是矩形,可得EF=BG,∠CGD=∠BGF=90°,再解Rt△CDG可求解CG的长,进而可求解.
【解答】解:(1)在Rt△ABE中,∠AEB=90°,∠A=15°,AE=576m,
∴AB=AEcosA=576cos15°≈600(m),
即AB的长约为600m;
(2)延长BC交DF于G,
∵BC∥AE,
∴∠CBE=90°,
∵DF⊥AF,
∴∠AFD=90°,
∴四边形BEFG为矩形,
∴EF=BG,∠CGD=∠BGF=90°,
∵CD=AB=600m,∠DCG=45°,
∴CG=CD•cos∠DCG=600×cos45°=600×22=3002,
∴AF=AE+EF=AE+BG=AE+BC+CG=576+50+3002≈1049(m),
即AF的长为1049m.
【点评】本题主要考查解直角三角形的应用,掌握三角函数的概念是解题的关键.
3.(2023•徐州)徐州电视塔为我市的标志性建筑之一,如图,为了测量其高度,小明在云龙公园的点C处,用测角仪测得塔顶A的仰角∠AFE=36°,他在平地上沿正对电视塔的方向后退至点D处,测得塔顶A的仰角∠AGE=30°.若测角仪距地面的高度FC=GD=1.6m,CD=70m,求电视塔的高度AB(精确到0.1m).(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin30°≈0.50,cos30°≈0.87,tan30°≈0.58)
【考点】解直角三角形的应用﹣仰角俯角问题.菁优网版权所有
【专题】解直角三角形及其应用;运算能力.
【分析】根据题意可得:GE⊥AB,EB=FC=GD=1.6m,FG=CD=70m,EF=BC,然后设EF=BC=xm,则GE=(x+70)m,在Rt△AEG中,利用锐角三角函数的定义求出AE的长,再在Rt△AEF中,利用锐角三角函数的定义求出AE的长,从而列出关于x的方程,进行计算即可解答.
【解答】解:由题意得:GE⊥AB,EB=FC=GD=1.6m,FG=CD=70m,EF=BC,
设EF=BC=xm,
∴GE=EF+FG=(x+70)m,
在Rt△AEG中,∠AGE=30°,
∴AE=EG•tan30°≈0.58(x+70)m,
在Rt△AEF中,∠AFE=36°,
∴AE=EF•tan36°≈0.73x(m),
∴0.73x=0.58(x+70),
解得:x≈270.67,
∴AE=0.73x≈197.59(m),
∴AB=AE+BE=197.59+1.6≈199.2(m),
∴电视塔的高度AB约为199.2m.
【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.
4.(2023•湘潭)问题情境:筒车是我国古代发明的一种水利灌溉工具,既经济又环保.明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理(如图①).假定在水流量稳定的情况下,筒车上的每一个盛水筒都按逆时针做匀速圆周运动,每旋转一周用时120秒.
问题设置:把筒车抽象为一个半径为r的⊙O.如图②,OM始终垂直于水平面,设筒车半径为2米.当t=0时,某盛水筒恰好位于水面A处,此时∠AOM=30°,经过95秒后该盛水筒运动到点B处.
问题解决:
(1)求该盛水筒从A处逆时针旋转到B处时,∠BOM的度数;
(2)求该盛水筒旋转至B处时,它到水面的距离.(结果精确到0.1米)(参考数据2≈1.414,3≈1.732)
【考点】解直角三角形的应用;勾股定理的应用;垂径定理的应用.菁优网版权所有
【专题】解直角三角形及其应用;运算能力.
【分析】(1)求出筒车每秒转过的度数,再根据周角的定义进行计算即可;
(2)根据直角三角形的边角关系分别求出OD、OC即可.
【解答】解:(1)由于筒车每旋转一周用时120秒.所以每秒转过360°÷120=3°,
∴∠BOM=360°﹣3°×95﹣30°=45°;
(2)如图,过点B、点A分别作OM的垂线,垂足分别为点C、D,
在Rt△AOD中,∠AOD=30°,OA=2米,
∴OD=32OA=3(米).
在Rt△BOC中,∠BOC=45°,OB=2米,
∴OC=22OB=2(米),
∴CD=OD﹣OC=3−2≈0.3(米),
即该盛水筒旋转至B处时到水面的距离约为0.3米.
【点评】本题考查解直角三角形的应用,掌握直角三角形的边角关系是正确解答的前提.
5.(2023•常德)今年“五一”长假期间,小陈、小余同学和家长去沙滩公园游玩,坐在如图的椅子上休息时,小陈感觉很舒服,激发了她对这把椅子的好奇心,就想出个问题考考同学小余,小陈同学先测量,根据测量结果画出了图1的示意图(图2).在图2中,已知四边形ABCD是平行四边形,座板CD与地面MN平行,△EBC是等腰三角形且BC=CE,∠FBA=114.2°,靠背FC=57cm,支架AN=43cm,扶手的一部分BE=16.4cm.这时她问小余同学,你能算出靠背顶端F点距地面(MN)的高度是多少吗?请你帮小余同学算出结果(最后结果保留一位小数).(参考数据:sin65.8°=0.91,cos65.8°=0.41,tan65.8°=2.23)
【考点】解直角三角形的应用;等腰三角形的性质;平行四边形的性质.菁优网版权所有
【专题】解直角三角形及其应用;应用意识.
【分析】过点F作FQ⊥CD于点Q,过C作CH⊥AB于点H,求出FQ、BH的值解答即可
【解答】解:过点F作FQ⊥CD于点Q,
∵四边形ABCD是平行四边形,∠FBA=114.2°,
∴∠FCQ=180°﹣114.2°=65.8°,FQ=FC•sin∠FCQ=57sin65.8°,
过点A作AP⊥MN于点P,
由题意知AB∥CD∥MN,FC∥AN,
则∠ANP=∠FCQ=65.8°,又AN=43cm,
∴AP=AN•sin∠ANP=43sin65.8°,
过C作CH⊥AB于点H,
∵BC=CE,EB=16.4,
∴BH=8.2,
∴CH=BH•tan∠CBH=8.2×2.23≈18.29,
∴靠背顶端F点距地面(MN)高度为
FQ+AP﹣HC=57sin65.8°+43sin65.8°﹣18.29=100×0.91﹣18.29=72.71≈72.7cm.
【点评】本题考查了解直角三角形,掌握平行四边形是解题的关键.
6.(2023•辽宁)暑假期间,小明与小亮相约到某旅游风景区登山.需要登顶600m高的山峰,由山底A处先步行300m到达B处,再由B处乘坐登山缆车到达山顶D处.已知点A,B,D,E,F在同一平面内,山坡AB的坡角为30°,缆车行驶路线BD与水平面的夹角为53°(换乘登山缆车的时间忽略不计).
(1)求登山缆车上升的高度DE;
(2)若步行速度为30m/min,登山缆车的速度为60m/min,求从山底A处到达山顶D处大约需要多少分钟(结果精确到0.1min).
(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)
【考点】解直角三角形的应用﹣坡度坡角问题.菁优网版权所有
【专题】解直角三角形及其应用;运算能力;推理能力.
【分析】(1)根据直角三角形的边角关系求出BM,进而求出DE即可;
(2)利用直角三角形的边角关系,求出BD的长,再根据速度、路程、时间的关系进行计算即可.
【解答】解:(1)如图,过点B作BM⊥AF于点M,由题意可知,∠A=30°,∠DBE=53°,DF=600m,AB=300m,
在Rt△ABM中,∠A=30°,AB=300m,
∴BM=12AB=150m=EF,
∴DE=DF﹣EF=600﹣150=450(m),
答:登山缆车上升的高度DE为450m;
(2)在Rt△BDE中,∠DBE=53°,DE=450m,
∴BD=DEsin∠DBE
≈4500.80
=562.5(m),
∴需要的时间t=t步行+t缆车
=30030+562.560
≈19.4(min),
答:从山底A处到达山顶D处大约需要19.4分钟.
【点评】本题考查解直角三角形的应用,掌握直角三角形的边角关系是正确解答的前提.
7.(2023•通辽)如图,一艘海轮位于灯塔P的北偏东72°方向,距离灯塔100nmile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东40°方向上的B处.这时,B处距离灯塔P有多远(结果取整数)?(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
【考点】解直角三角形的应用﹣方向角问题.菁优网版权所有
【专题】解直角三角形及其应用;运算能力.
【分析】根据题意可得:PC⊥AB,EF∥AB,从而可得∠A=∠EPA=72°,∠B=∠BFP=40°,然后在Rt△APC中,利用锐角三角函数的定义求出PC的长,再在Rt△BPC中,利用锐角三角函数的定义求出BP的长,即可解答.
【解答】解:如图:
由题意得:PC⊥AB,EF∥AB,
∴∠A=∠EPA=72°,∠B=∠BFP=40°,
在Rt△APC中,AP=100海里,
∴PC=AP•sin72°≈100×0.95=95(海里),
在Rt△BCP中,BP=PCsin40°≈950.64≈148(海里),
∴B处距离灯塔P约有148海里.
【点评】本题考查了解直角三角形的应用﹣方向角问题,熟练掌锐角三角函数的定义是解题的关键.
8.(2023•内蒙古)为了增强学生体质、锤炼学生意志,某校组织一次定向越野拉练活动.如图,A点为出发点,途中设置两个检查点,分别为B点和C点,行进路线为A→B→C→A.B点在A点的南偏东25°方向32km处,C点在A点的北偏东80°方向,行进路线AB和BC所在直线的夹角∠ABC为45°.
(1)求行进路线BC和CA所在直线的夹角∠BCA的度数;
(2)求检查点B和C之间的距离(结果保留根号).
【考点】解直角三角形的应用﹣方向角问题.菁优网版权所有
【专题】解直角三角形及其应用;运算能力.
【分析】(1)根据题意可得:∠NAC=80°,∠BAS=25°,从而利用平角定义可得∠CAB=75°,然后利用三角形内角和定理进行计算即可解答;
(2)过点A作AD⊥BC,垂足为D,在Rt△ABD中,利用锐角三角函数的定义求出AD和BD的长,再在Rt△ADC中,利用锐角三角函数的定义求出CD的长,然后利用线段的和差关系进行计算,即可解答.
【解答】解:(1)由题意得:∠NAC=80°,∠BAS=25°,
∴∠CAB=180°﹣∠NAC﹣∠BAS=75°,
∵∠ABC=45°,
∴∠ACB=180°﹣∠CAB﹣∠ABC=60°,
∴行进路线BC和CA所在直线的夹角∠BCA的度数为60°;
(2)过点A作AD⊥BC,垂足为D,
在Rt△ABD中,AB=32km,∠ABC=45°,
∴AD=AB•sin45°=32×22=3(km),
BD=AB•cos45°=32×22=3(km),
在Rt△ADC中,∠ACB=60°,
CD=ADtan60°=33=3(km),
∴BC=BD+CD=(3+3)km,
∴检查点B和C之间的距离(3+3)km.
【点评】本题考查了解直角三角形的应用﹣方向角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.
9.(2023•湖北)为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形ABCD,斜面坡度i=3:4是指坡面的铅直高度AF与水平宽度BF的比.已知斜坡CD长度为20米,∠C=18°,求斜坡AB的长.(结果精确到0.1米)(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
【考点】解直角三角形的应用﹣坡度坡角问题.菁优网版权所有
【专题】解直角三角形及其应用;运算能力.
【分析】过点D作DE⊥BC,垂足为E,根据题意可得:AF⊥BC,DE=AF,再根据已知可设AF=3x米,则BF=4x米,然后在Rt△ABF中,利用勾股定理求出AB的长,再在Rt△DEC中,利用锐角三角函数的定义求出DE的长,从而求出AF的长,最后进行计算即可解答.
【解答】解:过点D作DE⊥BC,垂足为E,
由题意得:AF⊥BC,DE=AF,
∵斜面AB的坡度i=3:4,
∴AFBF=34,
∴设AF=3x米,则BF=4x米,
在Rt△ABF中,AB=AF2+BF2=(3x)2+(4x)2=5x(米),
在Rt△DEC中,∠C=18°,CD=20米,
∴DE=CD•sin18°≈20×0.31=6.2(米),
∴AF=DE=6.2米,
∴3x=6.2,
解得:x=3115,
∴AB=5x≈10.3(米),
∴斜坡AB的长约为10.3米.
【点评】本题考查了解直角三角形的应用﹣坡度坡角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.
10.(2023•长沙)2023年5月30日9点31分,“神舟十六号”载人飞船在中国酒泉卫星发射中心点火发射,成功把景海鹏、桂海潮、朱杨柱三名航天员送入到中国空间站.如图,在发射的过程中,飞船从地面O处发射,当飞船到达A点时,从位于地面C处的雷达站测得AC的距离是8km,仰角为30°;10s后飞船到达B处,此时测得仰角为45°.
(1)求点A离地面的高度AO;
(2)求飞船从A处到B处的平均速度.(结果精确到0.1km/s,参考数据:3≈1.73)
【考点】解直角三角形的应用﹣仰角俯角问题.菁优网版权所有
【专题】解直角三角形及其应用;应用意识.
【分析】(1)根据直角三角形 到现在即可得到结论;
(2)在Rt△AOC中,根据直角三角形的性质得到OC=32AC=43(km),在Rt△BOC中,根据等腰直角三角形的性质得到OB=OC=43km,于是得到结论.
【解答】解:(1)在Rt△AOC中,∵∠AOC=90°,∠ACO=30°,AC=8km,
∴AO=12AC=12×8=4(km),
(2)在Rt△AOC中,∵∠AOC=90°,∠ACO=30°,AC=8km,
∴OC=32AC=43(km),
在Rt△BOC中,∵∠BOC=90°,∠BCO=45°,
∴∠BCO=∠OBC=45°,
∴OB=OC=43km,
∴AB=OB﹣OA=(43−4)km,
∴飞船从A处到B处的平均速度=43−410≈0.3(km/s).
【点评】本题考查了解直角三角形﹣方向角问题,正确地求得结果是解题的关键.
11.(2023•张家界)“游张家界山水,逛七十二奇楼”成为今年旅游新特色.某数学兴趣小组用无人机测量奇楼AB的高度,测量方案如图:先将无人机垂直上升至距水平地面225m的P点,测得奇楼顶端A的俯角为15°,再将无人机沿水平方向飞行200m到达点Q,测得奇楼底端B的俯角为45°,求奇楼AB的高度.(结果精确到1m,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)
【考点】解直角三角形的应用﹣仰角俯角问题.菁优网版权所有
【专题】解直角三角形及其应用;应用意识.
【分析】延长BA交PQ的延长线于C,则∠ACQ=90°,根据题意得到BC=225m,PQ=200m,解直角三角形即可得到结论.
【解答】解:延长BA交PQ的延长线于C,
则∠ACQ=90°,
由题意得,BC=225m,PQ=200m,
在Rt△BCQ中,∠BQC=45°,
∴CQ=BC=225m,
∴PC=PQ+CQ=425(m),
在Rt△PCA中,tan∠APC=tan15°=ACPC=AC425≈0.27,
∴AC=114.75m,
∴AB=BC﹣AC=225﹣114.75=110.25≈110(m),
答:奇楼AB的高度约为110m.
【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,正确地作出辅助线是解题的关键.
12.(2023•菏泽)无人机在实际生活中的应用越来越广泛.如图所示,某人利用无人机测量大楼的高度BC,无人机在空中点P处,测得点P距地面上A点80米,点A处的俯角为60°,楼顶C点处的俯角为30°,已知点A与大楼的距离AB为70米(点A,B,C,P在同一平面内),求大楼的高度BC(结果保留根号).
【考点】解直角三角形的应用﹣仰角俯角问题.菁优网版权所有
【专题】解直角三角形及其应用;几何直观;运算能力.
【分析】过P作 PH⊥AB于H,过C作CG⊥PH于Q,而 CB⊥AB,则四边形 CQHB是矩形,先解Rt△APH,求出PH,AH,得到CQ的长度,再解Rt△PQC,得到PQ的长
即可解决问题.
【解答】解:如图所示:
过P作 PH⊥AB于H,过C作CG⊥PH于Q,而 CB⊥AB,
则四边形 CQHB是矩形,
∴QH=BC,BH=CQ,
由题意可得:AP=80,∠PAH=60°,∠PCQ=30°,AB=70,
∴PH=APsin60°=80×32=403,AH=AP cos60°=40,
∴CQ=BH=70﹣40=30,
∴PQ=CQ•tan30°=103,
∴BC=QH=403−103=303,
∴大楼的高度BC为303m.
【点评】本题考查的是矩形的判定与性质,解直角三角形的实际应用,理解仰角与俯角的含义是解本题的关键.
13.(2023•浙江)图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角范围内才能被识别),其示意图如图2,摄像头A的仰角、俯角均为15°,摄像头高度OA=160cm,识别的最远水平距离OB=150cm.
(1)身高208cm的小杜,头部高度为26cm,他站在离摄像头水平距离130cm的点C处,请问小杜最少需要下蹲多少厘米才能被识别?
(2)身高120cm的小若,头部高度为15cm,踮起脚尖可以增高3cm,但仍无法被识别,社区及时将摄像头的仰角、俯角都调整为20°(如图3),此时小若能被识别吗?请计算说明.
(精确到0.1cm,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
【考点】解直角三角形的应用﹣仰角俯角问题;视点、视角和盲区;全等三角形的判定与性质.菁优网版权所有
【专题】图形的全等;解直角三角形及其应用;应用意识.
【分析】(1)过C作OB的垂线分别交仰角、俯角线于点E,D,交水平线于点F,在Rt△AEF中,根据三角函数的定义得到EF=AF•tan15°≈130×0.27=35.1(cm),根据全等三角形的性质得到结论;
(2)如图2,过B作OB的垂线分别交仰角、俯角线于M.N.交水平线于P,根据三角函数的定义得到MP=AP•tan20°≈150×0.36=54.0(cm),根据全等三角形的性质得到PN=MP=54.0cm,于是得到结论.
【解答】解:(1)过C作OB的垂线分别交仰角、俯角线于点E,D,交水平线于点F,
在Rt△AEF中,tan∠EAF=EFAF,
∴EF=AF•tan15°≈130×0.27=35.1(cm),
∵AF=AF,∠EAF=∠DAF,∠AFE=∠AFD=90°,
∴△ADF≌△AEF(SAS),
∴EF=DE=35.1cm,
∴CE=160+35.1=195.1(cm),
∴小杜最少需要下蹲208﹣195.1=12.9厘米才能被识别;
(2)如图2,过B作OB的垂线分别交仰角、俯角线于M.N.交水平线于P,
在Rt△APM中,tan∠MAP=MPAP,
∴MP=AP•tan20°≈150×0.36=54.0(cm),
∵AP=AP,∠MAP=∠NAP,∠APM=∠APN=90°,
∴△AMP≌△ANP(ASA),
∴PN=MP=54.0cm,
∴BN=160﹣54.0=106.0(cm),
∴小若踮起脚尖后头顶的高度为120+3=123(cm),
∴小若头顶超出点N的高度为:123﹣106.0=17.0(cm)>15cm,
∴踮起脚尖小若能被识别.
【点评】此题主要考查了解直角三角形的应用﹣仰角俯角问题,正确作出辅助线是解题关键.
14.(2023•鄂州)鄂州市莲花山是国家4A级风景区,元明塔造型独特,是莲花山风景区的核心景点,深受全国各地旅游爱好者的青睐.今年端午节,景区将举行大型包粽子等节日庆祝活动.如图2,景区工作人员小明准备从元明塔的点G处挂一条大型竖直条幅到点E处,挂好后,小明进行实地测量,从元明塔底部F点沿水平方向步行30米到达自动扶梯底端A点,在A点用仪器测得条幅下端E的仰角为30°;接着他沿自动扶梯AD到达扶梯顶端D点,测得点A和点D的水平距离为15米,且tan∠DAB=43;然后他从D点又沿水平方向行走了45米到达C点,在C点测得条幅上端G的仰角为45°.(图上各点均在同一个平面内,且G,C,B共线,F,A,B共线,G、E、F共线,CD∥AB,GF⊥FB).
(1)求自动扶梯AD的长度;
(2)求大型条幅GE的长度.(结果保留根号)
【考点】解直角三角形的应用﹣仰角俯角问题.菁优网版权所有
【专题】解直角三角形及其应用;运算能力.
【分析】(1)过点D作DH⊥AB,垂足为H,然后在Rt△ADH中,利用锐角三角函数的定义求出DH的长,从而利用勾股定理求出AD的长,即可解答;
(2)过点C作CM⊥AB,垂足为M,根据题意可得:DC=HM=45米,DH=CM=20米,再利用平行线的性质可得∠DCG=∠B=45°,从而在Rt△CMB中,利用锐角三角函数的定义求出BM的长,进而求出BF的长,然后在Rt△AFE中,利用锐角三角函数的定义求出EF的长,再在Rt△GFB中,利用锐角三角函数的定义求出GF的长,从而利用线段的和差关系进行计算,即可解答.
【解答】解:(1)过点D作DH⊥AB,垂足为H,
在Rt△ADH中,AH=15米,tan∠DAB=43,
∴DH=AH•tan∠DAB=15×43=20(米),
∴AD=AH2+DH2=152+202=25(米),
∴自动扶梯AD的长度为25米;
(2)过点C作CM⊥AB,垂足为M,
由题意得:DC=HM=45米,DH=CM=20米,
∵DC∥AB,
∴∠DCG=∠B=45°,
在Rt△CMB中,BM=CMtan45°=20(米),
∵AF=30米,AH=15米,
∴BF=AF+AH+HM+BM=30+15+45+20=110(米),
在Rt△AFE中,∠EAF=30°,
∴EF=AF•tan30°=30×33=103(米),
在Rt△GFB中,GF=BF•tan45°=110(米),
∴GE=GF﹣EF=(110﹣103)米,
∴大型条幅GE的长度为(110﹣103)米.
【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.
15.(2023•河南)综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD为正方形,AB=30cm,顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线AM交BC于点H.经测量,点A距地面1.8m,到树EG的距离AF=11m,BH=20cm.求树EG的高度(结果精确到0.1m).
【考点】解直角三角形的应用.菁优网版权所有
【专题】等腰三角形与直角三角形;解直角三角形及其应用;运算能力.
【分析】由题意可知,∠BAE=∠MAF=∠BAD=90°,FG=1.8m,易知∠EAF=∠BAH,可得tan∠EAF=EFAF=tan∠BAH=23,进而求得EF=223m,利用EG=EF+FG即可求解.
【解答】解:由题意可知,∠BAE=∠MAF=∠BAD=90°,FG=1.8m,
则∠EAF+∠BAF=∠BAF+∠BAH=90°,
∴∠EAF=∠BAH,
∵AB=30cm,BH=20cm,
则tan∠EAF=BHAB=23,
∴tan∠EAF=EFAF=tan∠BAH=23,
∵AF=11m,
则EF11=23,
∴EF=223,
∴EG=EF+FG=223+1.8≈9.1m.
答:树EG的高度为9.1m.
【点评】本题考查解直角三角形的应用,得到∠EAF=∠BAH是解决问题的关键.
16.(2023•绥化)如图,直线MN和EF为河的两岸,且MN∥EF,为了测量河两岸之间的距离,某同学在河岸FE的B点测得∠CBE=30°,从B点沿河岸FE的方向走40米到达D点,测得∠CDE=45°.
(1)求河两岸之间的距离是多少米?(结果保留根号)
(2)若从D点继续沿DE的方向走(123+12)米到达P点.求tan∠CPE的值.
【考点】解直角三角形的应用.菁优网版权所有
【专题】解直角三角形及其应用;运算能力;推理能力.
【分析】(1)根据直角三角形的边角关系得出3CH﹣CH=40,进而求出答案;
(2)求出HP,根据锐角三角函数的定义进行计算即可.
【解答】解:如图,过点C作CH⊥EF于点H,
在Rt△CHB中,
∵tan∠CBH=33=CHHB,
∴HB=3CH,
在Rt△CHD中,∠CDH=45°,
∴CH=DH,
又∵BH﹣DH=BD=40,
∴3CH﹣CH=40,
解得CH=203+20,
即河两岸之间的距离是(203+20)米;
(2)在Rt△CHP中,HP=HD=PD=203+20﹣(123+12)=83+8,
∴tan∠CPE=CHHP
=203+2083+8
=208
=52.
【点评】本题了、考查解直角三角形的应用,掌握直角三角形的边角关系是正确解答的前提.
17.(2023•兰州)如图1是我国第一个以“龙”为主题的主题公园——“兰州龙源”、“兰州龙源”的“龙”字主题雕塑以紫铜铸造,如巨龙腾空,气势如虹,屹立在黄河北岸、某数学兴趣小组开展了测量“龙”字雕塑CD高度的实践活动,具体过程如下,如图2,“龙”字雕塑CD位于垂直地面的基座BC上,在平行于水平地面的A处测得∠BAC=38°,∠BAD=53°,AB=18m.求“龙”字雕塑CD的高度,(B,C,D三点共线,BD⊥AB,结果精确到0.1m)(参考数据:sin38°=0.62,cos38°=0.79,tan38°=0.78,sin53°=080,cos53°=0.60,tan53°=1.33)
【考点】解直角三角形的应用.菁优网版权所有
【专题】解直角三角形及其应用;运算能力;推理能力.
【分析】先在Rt△ABC中由AB=18m,∠BAC=38°得BC=AB•tan∠BAC=14.04(m),再在Rt△ABD中由AB=18m,∠BAD=53°得BD=AB•tan∠BAD=23.94m,然后由CD=BD﹣BC即可得出答案.
【解答】解:在Rt△ABC中,AB=18m,∠BAC=38°,
∵tan∠BAC=BCAB,
∴BC=AB•tan∠BAC=18tan38°=18×0.78=14.04(m),
在Rt△ABD中,AB=18m,∠BAD=53°,
∵tan∠BAD=BDAB,
∴BD=AB•tan∠BAD=18tan53°=18×1.33=23.94(m),
∴CD=BD﹣BC=13.94﹣14.04=9.9(m).
答:“龙”字雕塑CD的高度约为9.9m.
【点评】此题主要考查了解直角三角形,解答此题的关键是理解题意,熟练掌握锐角三角函数的定义.
18.(2023•广东)2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站.如图中的照片展示了中国空间站上机械臂的一种工作状态.当两臂AC=BC=10m,两臂夹角∠ACB=100°时,求A,B两点间的距离.(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)
【考点】解直角三角形的应用.菁优网版权所有
【专题】等腰三角形与直角三角形;解直角三角形及其应用;运算能力.
【分析】连接AB,取AB中点D,连接CD,根据AC=BC,点D为AB中点,可得∠ACD=∠BCD=12∠ACB=50°,在Rt△ACD中,sin50°=AD10,解得AD=10×sin50°≈7.66(m),故AB=2AD≈15.3(m).
【解答】解:连接AB,取AB中点D,连接CD,如图,
∵AC=BC,点D为AB中点,
∴中线CD为等腰三角形的角平分线(三线合一),AD=BD=12AB,
∴∠ACD=∠BCD=12∠ACB=50°,
在Rt△ACD中,
sin∠ACD=ADAC,
∴sin50°=AD10,
∴AD=10×sin50°≈7.66(m),
∴AB=2AD=2×7.66=15.32≈15.3(m),
答:A、B的距离大约是15.3m.
【点评】本题考查解直角三角形的应用,解题的关键是掌握锐角三角函数的定义.
19.(2023•聊城)东昌湖西岸的明珠大剧院,隔湖与远处的角楼、城门楼、龙堤、南关桥等景观遥相呼应.如图所示,城门楼B在角楼A的正东方向520m处,南关桥C在城门楼B的正南方向1200m处.在明珠大剧院P测得角楼A在北偏东68.2°方向,南关桥C在南偏东56.31°方向(点A,B,C,P四点在同一平面内),求明珠大剧院到龙堤BC的距离(结果精确到1m)
(参考数据:sin68,2°≈0.928,cos68.2°≈0.371,tan68.2°≈2.50,sin56.31°≈0.832,cos56.31°≈0.555,tan56.31°≈1.50)
【考点】解直角三角形的应用﹣方向角问题.菁优网版权所有
【专题】解直角三角形及其应用;应用意识.
【分析】过P作PE⊥BC于E,过A作AD⊥PE于D,根据矩形的性质得到DE=AB=520m,设PD=xm,解直角三角形即可得到结论.
【解答】解:过P作PE⊥BC于E,过A作AD⊥PE于D,
则四边形ADEB是矩形,
∴DE=AB=520m,
设PD=xm,
在Rt△APD中,∵∠PAD=68.2°,
∴AD=PDtan68.2°≈x2.5m,
∴BE=AD=x2.5m,
∴PE=PD+DE=(x+520)m,CE=BC﹣BE=(1200−2x5)m,
在Rt△PCE中,tanC=tan56.31°=PECE=x+5201200−2x5≈1.5,
解得x=800,
∴PD=800m,
∴PE=PD+DE=800+520=1320(m),
答:明珠大剧院到龙堤BC的距离约为1320m.
【点评】本题考查了解直角三角形的应用﹣方向角问题,矩形的判定和性质,正确地作出辅助线构造直角三角形是解题的关键,
20.(2023•郴州)某次军事演习中,一艘船以40km/h的速度向正东航行,在出发地A测得小岛C在它的北偏东60°方向,2小时后到达B处,浏得小岛C在它的北偏西45°方向,求该船在航行过程中与小岛C的最近距离(参考数据:2≈1.41,3≈1.73.结果精确到0.1km).
【考点】解直角三角形的应用﹣方向角问题;勾股定理的应用.菁优网版权所有
【专题】解直角三角形及其应用;应用意识.
【分析】由题意得,AB=40×2=80(海里),∠CAB=30°,∠ABC=45°,过C作CD⊥AB于D,解直角三角形即可得到结论.
【解答】解:由题意得,AB=40×2=80(海里),∠CAB=30°,∠ABC=45°,
过C作CD⊥AB于D,
∴∠ADC=∠BDC=90°,
∴AD=3CD,BD=CD,
∵AB=80海里,
∴3CD+CD=80,
解得CD=403−40≈29.2,
答:该船在航行过程中与小岛C的最近距离为29.2海里.
【点评】本题考查解直角三角形应用﹣方向角问题、勾股定理的应用等知识,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
21.(2023•邵阳)我国航天事业捷报频传,2023年5月30日,被誉为“神箭”的长征二号F运载火箭托举神舟十六号载人飞船跃入苍穹,中国空间站应用与发展阶段首次载人发射任务取得圆满成功.如图,有一枚运载火箭从地面O处发射,当火箭到达P处时,地面A处的雷达站测得AP距离是5000m,仰角为23°,9s后,火箭直线到达Q处,此时地面A处雷达站测得Q处的仰角为45°,求火箭从P到Q处的平均速度(结果精确到1m/s).
(参考数据:sin23°≈0.39,cos23°≈0.92,tan23°≈0.42)
【考点】解直角三角形的应用﹣仰角俯角问题.菁优网版权所有
【专题】解直角三角形及其应用;应用意识.
【分析】利用已知结合锐角三角函数关系得出PO以及QO的长,再求出PQ的长,即可得出平均速度.
【解答】解:由题意可得:∠PAO=23°,∠QAO=45°,AP=5000m,
则PO=APsin23°=5000×0.39≈1950(m),
AO=APcos23°=5000×0.92≈4600(m),
∴OQ=AO=4600m,
∴PQ=OQ﹣OP=4600﹣1950=2650(m),
则火箭从P处到Q处的平均速度为:2650÷9≈294(m/s),
答:火箭从A处到B处的平均速度294m/s.
【点评】此题主要考查了解直角三角形的应用,得出QO的长是解题关键.
22.(2023•温州)根据背景素材,探索解决问题.
测算发射塔的高度
背景素材
某兴趣小组在一幢楼房窗口测算远处小山坡上发射塔的高度MN(如图1),他们通过自制的测倾仪(如图2)在A,B,C三个位置观测,测倾仪上的示数如图3所示.
经讨论,只需选择其中两个合适的位置,通过测量、换算就能计算发射塔的高度
问题解决
任务1
分析规划
选择两个观测位置:点 A 和点 B(答案不唯一) .
获取数据
写出所选位置观测角的正切值,并量出观测点之间的图上距离.
任务2
推理计算
计算发射塔的图上高度MN.
任务3
换算高度
楼房实际宽度DE为12米,请通过测量换算发射塔的实际高度.
注:测量时,以答题纸上的图上距离为准,并精确到1mm.
【考点】解直角三角形的应用﹣坡度坡角问题.菁优网版权所有
【专题】解直角三角形及其应用;运算能力;推理能力.
【分析】通过作垂线,构造直角三角形,依据直角三角形的边角关系进行计算即可.
【解答】解:任务1:【分析规划】选择点A和点B(答案不唯一),
故答案为:A、B(答案不唯一);
【获取数据】tan∠1=18,tan∠2=14,tan∠3=13,测得图上AB=4mm;
任务2:如图1,过点A作AF⊥MN于点F,过点B作BG⊥MN于点G,则FG=AB=4mm,
设MF=xmm,则MG=(x+4)mm,
∵tan∠MAF=xAF=14,
tan∠MBG=x+4BG=13,
∴AF=4x,BG=3x+12,
∵AF=BG,即4x=3x+12,
∴x=12,即MF=12mm,
∴AF=BG=4x=48(mm),
∵tan∠FAN=FN48=18,
∴FN=6mm,
∴MN=MF+FN=12+6=18(mm),
任务3:测得图上DE=5mm,设发射塔的实际高度为hm,由题意得,
512=18ℎ,
解得h=43.2(m),
∴发射塔的实际高度为43.2m.
【点评】本题考查解直角三角形的应用,掌握直角三角形的边角关系是正确解答的前提.
23.(2023•广元)“一缕清风银叶转”,某市20台风机依次矗立在云遮雾绕的山脊之上,风叶转动,风能就能转换成电能,造福千家万户.某中学初三数学兴趣小组,为测量风叶的长度进行了实地测量.如图,三片风叶两两所成的角为120°,当其中一片风叶OB与塔干OD叠合时,在与塔底D水平距离为60米的E处,测得塔顶部O的仰角∠OED=45°,风叶OA的视角∠OEA=30°.
(1)已知α,β两角和的余弦公式为:cos(α+β)=cosαcosβ﹣sinαsinβ,请利用公式计算cos75°;
(2)求风叶OA的长度.
【考点】解直角三角形的应用﹣仰角俯角问题;视点、视角和盲区.菁优网版权所有
【专题】数形结合;应用意识.
【分析】(1)根据两角和的余弦公式把75°角分成两个特殊角30°和45°,根据特殊角的锐角三角函数值代入求值即可;
(2)过点A作AF⊥OE于F,先判断△AOE是等腰三角形,然后解直角三角形的方法先求出OF的长,再求出OA的长即可.
【解答】解:(1)由题意得:cos75°=cos(30°+45°)=cos30°cos45°﹣sin30°sin45°=32×22−12×22=6−24;
(2)由题意得:∠OED=45°,DE=60米,
∴OE=602米,∠ODE=45°,
∴∠AOE=120°﹣45°=75°,
又∵∠OEA=30°.
∴∠OAE=75°,
∴EA=OE=602米,
如图,过点A作AF⊥OE于F,
在Rt△AEF中,∠AEF=30°,AE=602米,
∴EF=306米,
∴OF=(602−306)米,
在Rt△AOF中,cos∠AOF=OFAO,
∵∠AOF=75°,OF=(602−306)米,
∴OA=602−3066−24=(603−60)米.
【点评】本题是解直角三角形的应用综合题,主要考查仰角俯角问题,特殊角的锐角三角函数值,深入理解题意,把实际问题转化为数学问题是解决问题的关键.
24.(2023•绍兴)图1是某款篮球架,图2是其示意图,立柱OA垂直地面OB,支架CD与OA交于点A,支架CG⊥CD交OA于点G,支架DE平行地面OB,篮筐EF与支架DE在同一直线上,OA=2.5米,AD=0.8米.∠AGC=32°.
(1)求∠GAC的度数;
(2)某运动员准备给篮筐挂上篮网,如果他站在凳子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)
【考点】解直角三角形的应用.菁优网版权所有
【专题】解直角三角形及其应用;运算能力.
【分析】(1)根据垂直定义可得∠ACG=90°,然后利用直角三角形的两个锐角互余进行计算,即可解答;
(2)延长OA,ED交于点M,根据垂直定义可得∠AOB=90°,从而利用平行线的性质可得∠DMA=∠AOB=90°,再根据对顶角相等可得∠DAM=∠GAC=58°,从而利用直角三角形的两个锐角互余可得∠ADM=32°,然后在Rt△ADM中,利用锐角三角函数的定义求出AM的长,从而利用线段的和差关系求出MO的长,比较即可解答.
【解答】解:(1)∵CG⊥CD,
∴∠ACG=90°,
∵∠AGC=32°,
∴∠GAC=90°﹣∠AGC=90°﹣32°=58°,
∴∠GAC的度数为58°;
(2)该运动员能挂上篮网,
理由如下:延长OA,ED交于点M,
∵OA⊥OB,
∴∠AOB=90°,
∵DE∥OB,
∴∠DMA=∠AOB=90°,
∵∠GAC=58°,
∴∠DAM=∠GAC=58°,
∴∠ADM=90°﹣∠DAM=32°,
在Rt△ADM中,AD=0.8米,
∴AM=AD•sin32°≈0.8×0.53=0.42(米),
∴OM=OA+AM=2.5+0.424=2.924(米),
∵2.924米<3米,
∴该运动员能挂上篮网.
【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.
25.(2023•随州)某校学生开展综合实践活动,测量某建筑物的高度AB,在建筑物附近有一斜坡,坡长CD=10米,坡角α=30°,小华在C处测得建筑物顶端A的仰角为60°,在D处测得建筑物顶端A的仰角为30°.(已知点A,B,C,D在同一平面内,B,C在同一水平线上)
(1)求点D到地面BC的距离;
(2)求该建筑物的高度AB.
【考点】解直角三角形的应用﹣仰角俯角问题;解直角三角形的应用﹣坡度坡角问题.菁优网版权所有
【专题】解直角三角形及其应用;应用意识.
【分析】(1)过点D作DE⊥BC,交BC的延长线于点E,根据三角函数的定义得到CE=53,根据勾股定理得到DE=CD2−CE2=5(m);
(2)过点D作DF⊥AB于点F,则BF=DE=5m,设BC=xm,则BE=DF=(53+x)m,解直角三角形即可得到结论.
【解答】解:(1)过点D作DE⊥BC,交BC的延长线于点E,
∵cosα=CECD=CE10=32,
解得CE=53,
∴DE=CD2−CE2=5(m).
∴点D到地面BC的距离为5m.
(2)过点D作DF⊥AB于点F,
则BF=DE=5m,
设BC=xm,则BE=DF=(53+x)m,
在Rt△ABC中,tan60°=ABBC=ABx=3,
解得AB=3x,
∴AF=(3x﹣5)m,
在Rt△ADF中,tan30°=AFDF=3x−553+x=33,
解得x=53,
经检验,x=53是原方程的解且符合题意,
∴AB=3×53=15(m).
∴居民楼的高度AB为15m.
【点评】本题考查解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,熟练掌握锐角三角函数的定义是解答本题的关键.
考点卡片
1.全等三角形的判定与性质
(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.
2.等腰三角形的性质
(1)等腰三角形的概念
有两条边相等的三角形叫做等腰三角形.
(2)等腰三角形的性质
①等腰三角形的两腰相等
②等腰三角形的两个底角相等.【简称:等边对等角】
③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】
(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.
3.勾股定理的应用
(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.
(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.
(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.
②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.
③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.
④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.
4.平行四边形的性质
(1)平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形.
(2)平行四边形的性质:
①边:平行四边形的对边相等.
②角:平行四边形的对角相等.
③对角线:平行四边形的对角线互相平分.
(3)平行线间的距离处处相等.
(4)平行四边形的面积:
①平行四边形的面积等于它的底和这个底上的高的积.
②同底(等底)同高(等高)的平行四边形面积相等.
5.垂径定理的应用
垂径定理的应用很广泛,常见的有:
(1)得到推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
(2)垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.
这类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.
6.解直角三角形的应用
(1)通过解直角三角形能解决实际问题中的很多有关测量问.
如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.
(2)解直角三角形的一般过程是:
①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).
②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.
7.解直角三角形的应用-坡度坡角问题
(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.
(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.
(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.
应用领域:①测量领域;②航空领域 ③航海领域:④工程领域等.
8.解直角三角形的应用-仰角俯角问题
(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.
(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.
9.解直角三角形的应用-方向角问题
(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.
(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.
10.视点、视角和盲区
(1)把观察者所处的位置定为一点,叫视点.
(2)人眼到视平面的距离视固定的(视距),视平面左右两个边缘到人眼的连线得到的角度就是视角.
(3)盲区:视线到达不了的区域为盲区.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2023/7/9 9:09:32;用户:组卷3;邮箱:zyb003@xyh.com;学号:41418966
相关试卷
这是一份中考数学二轮精品专题复习 整式(解答题),共15页。试卷主要包含了,其中a=33, 其中a=﹣1,b=14,+3a2,其中a=−13,2−25+|﹣4|;,计算,2,其中a=﹣3,b=13,的值等内容,欢迎下载使用。
这是一份中考数学二轮精品专题复习 一次函数(解答题),共85页。试卷主要包含了且平行于x轴的直线交于点C,变化的数据如表,之间的函数图象如图所示,之间的关系如图所示,的函数关系如图所示等内容,欢迎下载使用。
这是一份中考数学二轮精品专题复习 圆(解答题二),共118页。