初中2.6.1菱形的性质同步测试题
展开2.6.1菱形的性质同步练习
一、选择题(本大题共8小题)
1. 如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于( )
A.3.5 B.4 C.7 D.14
2. 如图,菱形ABCD的周长为8cm,高AE长为cm,则对角线AC长和BD长之比为( )
A.1:2 B.1:3 C.1: D.1:
3. .如图,在菱形ABCD中,AC与BD相交于点O,AC=8,BD=6,则菱形的边长AB等于( )
A.10 B. C.6 D.5
4. 如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于( )
A.6米 B.6米 C.3米 D.3米
5. 如图,在菱形ABCD中,对角线AC、BD相交于点O,下列结论:①AC⊥BD;②OA=OB;③∠ADB=∠CDB;④△ABC是等边三角形,其中一定成立的是( )
A.①② B.③④ C.②③ D.①③
6. 菱形具有而平行四边形不一定具有的性质是( )
A.两组对边分别平行 B.两组对角分别相等
C.对角线互相平分 D.对角线互相垂直
7. 如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF=,BD=4,则菱形ABCD的周长为( )
A.4 B.4 C.4 D.28
8. 如图,在菱形ABCD中,AB=8,点E,F分别在AB,AD上,且AE=AF,过点E作EG∥AD交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O.当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为( )
A.6.5 B.6 C.5.5 D.5
二、填空题(本大题共6小题)
9. 已知菱形ABCD的面积为24cm2,若对角线AC=6cm,则这个菱形的边长为 cm.
10. 在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是 .
11. 如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE= .
12. 如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为 .
13. 菱形0BCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为 ( ) .
三、计算题(本大题共4小题)
14. 如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.
15. 如图所示,等边三角形CEF的边长与菱形ABCD的边长相等.
(1)求证:∠AEF=∠AFE;
(2)求∠B的度数.
16. 如图,菱形ABCD的对角线AC,BD相交于点O,点E,F分别是边AB,AD的中点.
(1)请判断△OEF的形状,并证明你的结论;
(2)若AB=13,AC=10,请求出线段EF的长.
参考答案:
一、选择题(本大题共8小题)
1. A
分析:根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.
解:∵菱形ABCD的周长为28,
∴AB=28÷4=7,OB=OD,
∵E为AD边中点,
∴OE是△ABD的中位线,
∴OE=AB=×7=3.5.
故选A.
2. D
分析:首先设设AC,BD相较于点O,由菱形ABCD的周长为8cm,可求得AB=BC=2cm,又由高AE长为cm,利用勾股定理即可求得BE的长,继而可得AE是BC的垂直平分线,则可求得AC的长,继而求得BD的长,则可求得答案.
解:如图,设AC,BD相较于点O,
∵菱形ABCD的周长为8cm,
∴AB=BC=2cm,
∵高AE长为cm,
∴BE==1(cm),
∴CE=BE=1cm,
∴AC=AB=2cm,
∵OA=1cm,AC⊥BD,
∴OB==(cm),
∴BD=2OB=2cm,
∴AC:BD=1:.
故选D.
3. D
分析:根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式进行计算即可得解.
解:∵四边形ABCD是菱形,
∴OA=AC,OB=BD,AC⊥BD,
∵AC=8,BD=6,
∴OA=4,OB=3,
∴AB==5,
即菱形ABCD的边长是5.
故选:D.
4.A
分析:由四边形ABCD为菱形,得到四条边相等,对角线垂直且互相平分,根据∠BAD=60°得到三角形ABD为等边三角形,在直角三角形ABO中,利用勾股定理求出OA的长,即可确定出AC的长.
解:∵四边形ABCD为菱形,
∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD=24÷4=6(米),
∵∠BAD=60°,
∴△ABD为等边三角形,
∴BD=AB=6(米),OD=OB=3(米),
在Rt△AOB中,根据勾股定理得:OA==3(米),
则AC=2OA=6米,
故选A.
5.D
分析:根据菱形的性质即可直接作出判断.
解:根据菱形的对角线互相垂直平分可得:①正确;②错误;
根据菱形的对角线平分一组内角可得③正确.
④错误.
故选D.
6. D
分析:根据菱形的特殊性质可知对角线互相垂直.
解:A、不正确,两组对边分别平行;
B、不正确,两组对角分别相等,两者均有此性质正确,;
C、不正确,对角线互相平分,两者均具有此性质;
D、菱形的对角线互相垂直但平行四边形却无此性质.
故选D.
7. C
分析:首先利用三角形的中位线定理得出AC,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.
解:∵E,F分别是AB,BC边上的中点,EF=,
∴AC=2EF=2,
∵四边形ABCD是菱形,
∴AC⊥BD,OA=AC=,OB=BD=2,
∴AB==,
∴菱形ABCD的周长为4.
故选:C.
8. C
分析:根据菱形的性质得出AD∥BC,AB∥CD,推出平行四边形ABHF、AEGD、GCHO,得出AF=FO=OE=AE和OH=CH=GC=GO,根据菱形的判定得出四边形AEOF与四边形CGOH是菱形,再解答即可.
解:∵四边形ABCD是菱形,
∴AD=BC=AB=CD,AD∥BC,AB∥CD,
∵EG∥AD,FH∥AB,
∴四边形AEOF与四边形CGOH是平行四边形,
∴AF=OE,AE=OF,OH=GC,CH=OG,
∵AE=AF,
∴OE=OF=AE=AF,
∵AE=AF,
∴BC﹣BH=CD﹣DG,即OH=HC=CG=OG,
∴四边形AEOF与四边形CGOH是菱形,
∵四边形AEOF与四边形CGOH的周长之差为12,
∴4AE﹣4(8﹣AE)=12,
解得:AE=5.5,
故选C
二、填空题(本大题共6小题)
9. 分析:】根据菱形的面积等于对角线乘积的一半可求出另一条对角线BD的长.然后根据勾股定理即可求得边长.
解:菱形ABCD的面积=AC•BD,
∵菱形ABCD的面积是24cm2,其中一条对角线AC长6cm,
∴另一条对角线BD的长=8cm;
边长是: =5cm.
故答案为:5.
10. 分析:AC与BD相交于点O,如图,根据菱形的性质得AC⊥BD,OD=OB=BD=4,OA=OC=AC=3,AB=BC=CD=AD,则可在Rt△AOD中,根据勾股定理计算出AD=5,于是可得菱形ABCD的周长为20.
解:AC与BD相交于点O,如图,
∵四边形ABCD为菱形,
∴AC⊥BD,OD=OB=BD=4,OA=OC=AC=3,AB=BC=CD=AD,
在Rt△AOD中,∵OA=3,OB=4,
∴AD==5,
∴菱形ABCD的周长=4×5=20.
故答案为20.
11. 分析:先根据菱形的性质得AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,再在Rt△OBC中利用勾股定理计算出BC=5,然后利用面积法计算OE的长.
解:∵四边形ABCD为菱形,
∴AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,
在Rt△OBC中,∵OB=3,OC=4,
∴BC==5,
∵OE⊥BC,
∴OE•BC=OB•OC,
∴OE==.
故答案为.
12. 分析:连接AC、BD交于点E,由菱形的性质得出AC⊥BD,AE=CE=AC,BE=DE=BD,由点B的坐标和点D的坐标得出OD=2,求出DE=4,AC=4,即可得出点C的坐标.
解:连接AC、BD交于点E,如图所示:
∵四边形ABCD是菱形,
∴AC⊥BD,AE=CE=AC,BE=DE=BD,
∵点B的坐标为(8,2),点D的坐标为(0,2),
∴OD=2,BD=8,
∴AE=OD=2,DE=4,
∴AC=4,
∴点C的坐标为:(4,4);
故答案为:(4,4).
13. 分析:点B的对称点是点D,连接ED,交OC于点P,再得出ED即为EP+BP最短,解答即可.
解:连接ED,如图,
∵点B关于OC的对称点是点D,
∴DP=BP,
∴ED即为EP+BP最短,
∵四边形OBCD是菱形,顶点B(2,0),∠DOB=60°,
∴点D的坐标为(1,),
∴点C的坐标为(3,),
∴可得直线OC的解析式为:y=x,
∵点E的坐标为(0,﹣1),
∴可得直线ED的解析式为:y=(1+)x﹣1,
∵点P是直线OC和直线ED的交点,
∴点P的坐标为方程组的解,
解方程组得:,
所以点P的坐标为(),
故答案为:().
三、计算题(本大题共4小题)
14. 分析:先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED是矩形,利用勾股定理即可求出BC=OE.
证明:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
∵四边形ABCD是菱形,
∴∠COD=90°,
∴四边形OCED是矩形,
∴DE=OC,
∵OB=OD,∠BOC=∠ODE=90°,
∴BC= =OE= ,
∴BC=OE.
15. 分析:本题中比较多的条件是相等的线段,出现了较多的等腰三角形.
(1)根据等腰三角形的性质可以得到∠B=∠BEC,∠D=∠CFD,∠CEF=∠CFE.因而就可以证明:∠AEF=∠AFE.
(2)连接AC,设∠BCE=y,∠B=x,根据三角形内角和定理得到方程组
,求解即可.
解:(1)证明:∵等边三角形CEF的边长与菱形ABCD的边长相等,
∴BC=CE.∴∠B=∠BEC.
同理∠D=∠CFD.
又∵∠B=∠D,∴∠BEC=∠CFD.
∵EC=FC,∴∠CEF=∠CFE.
∵∠BEC+∠CEF+∠AEF=∠CFD+∠CFE+∠AFE=180°,
∴∠AEF=∠AFE.
(2)连接AC.
设∠BCE=y°.∠B=x°.
∵△CEF是等边三角形,∴∠ECF=60°.
又根据对称性得到CA为∠ECF的平分线,因而∠ACE=30°.
∴在△ABC和△BCE中,根据三角形内角和定理分别得到方程组
解得
即∠B的度数是80°.
16. 分析:(1)利用菱形的性质结合直角三角形斜边上的中线等于斜边的一半,进而求出即可;
(2)利用勾股定理得出BO的长再利用三角形中位线定理得出EF的长.
解:(1)△OEF是等腰三角形,
理由:∵四边形ABCD是菱形,
∴AB=AD,AC⊥BD,
∵点E,F分别是边AB,AD的中点,
∴EO=AB,OF=AD,
∴EO=FO,
∴△OEF是等腰三角形;
(2)∵四边形ABCD是菱形,AC=10,
∴AO=5,∠AOB=90°,
∴BO===12,
∴BD=24,
∵点E,F分别是边AB,AD的中点,
∴EFBD,
∴EF=12.
湘教版八年级下册2.6.1菱形的性质一课一练: 这是一份湘教版八年级下册2.6.1菱形的性质一课一练,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
数学八年级下册2.6.2菱形的判定课时作业: 这是一份数学八年级下册2.6.2菱形的判定课时作业,共18页。试卷主要包含了选择题,填空题,计算题等内容,欢迎下载使用。
初中数学湘教版八年级下册2.5.1矩形的性质练习: 这是一份初中数学湘教版八年级下册2.5.1矩形的性质练习,共14页。试卷主要包含了选择题,填空题,计算题等内容,欢迎下载使用。