北师大版九年级上册3 反比例函数的应用综合训练题
展开6.3 反比例函数的应用(课后练习) 北师大版九年级上册
一.选择题
1.某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强p(Pa)是气球体积V(m3)的反比例函数,且当V=1.5m3时,p=16000Pa,当气球内的气压大于40000Pa时,气球将爆炸,为确保气球不爆炸,气球的体积应( )
A.不小于0.5m3 B.不大于0.5m3
C.不小于0.6m3 D.不大于0.6m3
2.为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产进行治污改造,其月利润y(万元)与月份x之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的一部分,下列选项错误的是( )
A.4月份的利润为50万元
B.治污改造完成后每月利润比前一个月增加30万元
C.治污改造完成前后共有4个月的利润低于100万元
D.9月份该厂利润达到200万元
3.如图,四边形OABC是平行四边形,对角线OB在y轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A,C作x轴的垂线垂足分别为M和N,则有以下的结论:①ON=OM;②△OMA≌△ONC;③阴影部分面积是(k1+k2);④四边形OABC是菱形,则图中曲线关于y轴对称,其中正确的结论是( )
A.①②④ B.②③ C.①③④ D.①④
4.如图,四边形OABF中,∠OAB=∠B=90°,点A在x轴上,双曲线y=过点F,交AB于点E,连接EF.若,S△BEF=4,则k的值为( )
A.6 B.8 C.12 D.16
5 .如图,对称轴为x=2的抛物线y=ax2+bx(a≠0)与x轴交于原点O与点A,与反比例函数交于点B,过点B作x轴的平行线,交y轴于点C,交反比例函数于点D,连接OB、OD.则下列结论中:
①ab>0; ②方程ax2+bx=0的两根为0和4;
③3a+b<0; ④tan∠BOC=4tan∠COD
正确的有( )
A.0个 B.1个 C.2个 D.3个
6 .如图,正方形ABCD的边AB在x轴的正半轴上,C(2,1),D(1,1).反比例函数y=的图象与边BC交于点E,与边CD交于点F.已知BE:CE=3:1,则DF:FC等于( )
A.4:1 B.3:1 C.2:1 D.1:1
7 .春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )
A.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3
B.室内空气中的含药量不低于8mg/m3的持续时间达到了11min
C.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种染病毒.此次消毒完全有效
D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含量达到2mg/m3开始,需经过59min后,学生才能进入室内
8 .一杠杆装置如图,杆的一端吊起一桶水,水桶对杆的拉力的作用点到支点的杆长固定不变.甲、乙、丙、丁四位同学分别在杆的另一端竖直向下施加压力F甲、F乙、F丙、F丁,将相同重量的水桶吊起同样的高度,若F乙<F丙<F甲<F丁,则这四位同学对杆的压力的作用点到支点的距离最远的是( )
A.甲同学 B.乙同学 C.丙同学 D.丁同学
9 .在温度不变的条件下,气体的压强和气体体积对应数值如下表,则可以反映y与x之间的关系的式子是( )
体积x(mL)
100
80
60
40
20
压强y(kPa)
60
75
100
150
300
A.y=6000x B.y=3000x C.y= D.y=
10.如图,直线y=k1x+b与x轴、y轴相交于P,Q两点,与y=的图象相交于A(﹣2,m),B(1,n)两点,连接OA,OB.下列结论:①k1+k2<0;②不等式k1x+b>的解集是x>﹣2或0<x<1;③S△AOP=S△BOQ;④m+n=0.其中正确的结论是( )
A.①③ B.②③④ C.①③④ D.②④
二.填空题
11 .一定质量的氧气,它的密度ρ(kg/m3)是它的体积V(m3)的反比例函数,当V=20m3时,ρ=1.36kg/m3,当V=40m3时,ρ= kg/m3.
12 .如图,已知梯形ABCO的底边AO在x轴上,BC∥AO,AB⊥AO,过点C的双曲线交OB于D,且OD:DB=1:2,若△OBC的面积等于3,则k的值是 .
13 .心理学家研究发现,一般情况下,在一节40分钟的课中,学生的注意力随教师讲课时间的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指数y随时间x(分)的变化规律如图所示,其中AB、BC分别为线段,CD为双曲线的一部分.上课开始时,注意力指数为20,第10分钟时,注意力指数为40.根据图象信息,若开始上课第t分钟学生的注意力指数与下课时的注意力指数相等,则t的值为 .
14 .如图所示,在平面直角坐标系中,正方形OABC的顶点O与原点重合,顶点A,C分别在x轴、y轴上,双曲线y=kx﹣1(k≠0,x>0)与边AB、BC分别交于点N、F,连接ON、OF、NF.若∠NOF=45°,NF=2,则点C的坐标为 .
15 .如图是8个台阶的示意图,每个台阶的高和宽分别是2和3,每个台阶凸出的角的顶点记作Tm(m为1~8的整数).函数y=(x>0)的图象为曲线L.
(1)若L过点T1,则k= ;
(2)若L过点T4,则它必定还过另一点Tm,则m= ;
(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有 个.
三.解答题
16 .为了预防流感,某学校每周末用药熏消毒法对教室进行消毒,已知药物释放过程中,教室内每立方米空气中含药量y(mg)与时间t(h)成正比例;药物释放完毕后,y与t成反比例,如图所示.根据图象信息,解决以下问题:
(1)写出从药物释放开始,y与t之间的两个函数关系式及相应的自变量取值范围;
(2)据测定,当空气中每立方米的含药量降低到0.25mg以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?
17 .如图,Rt△ABC的边BC在x轴上,点O为BC的中点,点A的坐标为(3,2),反比例函数y=(x>0)的图象经过点A,将△ABC沿x轴x向右平移得到△A′B′C′,A′C′与反比例函数的图象交于点D,连接B′D.
(1)求反比例函数的解析式.
(2)在平移过程中,当△A′DB′∽△ABC时,求点D的坐标.
18 .如图,直线AC和BC的解析式分别是y=x+1和y=﹣+,AC与BC相交于点C,CD⊥y轴于点D,反比例函数y=(x>0)的图象与直线BC相交于点C和E,点P是x轴上一个动点.
(1)求反比例函数的解析式;
(2)根据函数图象,请直接写出当>﹣+时x的取值范围;
(3)当以点B、C、D、P为顶点的四边形是平行四边形时,请直接写出此时点P的坐标.
19 .如图,小明想要用撬棍撬动一块大石头,已知阻力为1600N,阻力臂长为0.5m.设动力为y(N),动力臂长为x(m).(杠杆平衡时,动力×动力臂=阻力×阻力臂,图中撬棍本身所受的重力略去不计.)
(1)求y关于x的函数表达式.
(2)当动力臂长为2m时,撬动石头至少需要多大的力?
(3)小明若想使动力不超过300N,在动力臂最大为2.5m的条件下,他能否撬动这块石头?请说明理由.
20 .如图,在平面直角坐标系中,点B,D分别在反比例函数和的图象上,AB⊥x轴于点A,DC⊥x轴于点C,O是线段AC的中点,AB=3,DC=2.
(1)求反比例函数的表达式.
(2)连接BD,OB,OD,求△ODB的面积.
(3)P是线段AB上的一个动点,Q是线段OB上的一个动点,试探究是否存在点P,使得△APQ是等腰直角三角形?若存在,直接写出符合条件的点P的坐标;若不存在,请说明理由.
初中数学北师大版九年级上册3 反比例函数的应用课后练习题: 这是一份初中数学北师大版九年级上册3 反比例函数的应用课后练习题,共14页。
初中数学北师大版九年级上册3 反比例函数的应用同步达标检测题: 这是一份初中数学北师大版九年级上册3 反比例函数的应用同步达标检测题,共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学北师大版九年级上册3 反比例函数的应用课时练习: 这是一份初中数学北师大版九年级上册3 反比例函数的应用课时练习,共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。