- 中考数学真题汇编第2期01 实数的有关概念与计算 试卷 2 次下载
- 中考数学真题汇编第2期02 整式、因式分解 试卷 2 次下载
- 中考数学真题汇编第2期04 一次不等式 试卷 3 次下载
- 中考数学真题汇编第2期05 二次方程、分式方程 试卷 3 次下载
- 中考数学真题汇编第2期06 一次函数与反比例函数 试卷 3 次下载
中考数学真题汇编第2期03 一次方程、二元一次方程组
展开
数学
中考数学真题汇编第2期
专题03 一次方程、二元一次方程组
一、单选题
1.(2023·浙江温州·统考中考真题)一瓶牛奶的营养成分中,碳水化合物含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30g.设蛋白质、脂肪的含量分别为,,可列出方程为( )
A. B.
C. D.
2.(2023·四川·统考中考真题)某学校课后兴趣小组在开展手工制作活动中,美术老师要求用14张卡纸制作圆柱体包装盒,准备把这些卡纸分成两部分,一部分做侧面,另一部分做底面.已知每张卡纸可以裁出2个侧面,或者裁出3个底面,如果1个侧面和2个底面可以做成一个包装盒,这些卡纸最多可以做成包装盒的个数为( )
A.6 B.8 C.12 D.16
3.(2023·四川宜宾·统考中考真题)“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”是《孙子算经》卷中著名数学问题.意思是:鸡兔同笼,从上面数,有35个头;从下面数,有94条腿.问鸡兔各有多少只?若设鸡有只,兔有只,则所列方程组正确的是( )
A. B.
C. D.
4.(2023·四川南充·统考中考真题)关于x,y的方程组的解满足,则的值是( )
A.1 B.2 C.4 D.8
5.(2023·四川遂宁·统考中考真题)《九章算术》是我国古代数学的经典书,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等;交易其一,金轻十三两.问金、银一枚各重几何?”意思是甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,则可列方程组为( )
A. B.
C. D.
二、填空题
6.(2023·浙江嘉兴·统考中考真题)我国古代数学名著《张丘建算经》中有这样一题:一只公鸡值5钱,一只母鸡值3钱,3只小鸡值1钱,现花钱买了只鸡.若公鸡有8只,设母鸡有只,小鸡有只,可列方程组为___________.
7.(2023·四川泸州·统考中考真题)关于,的二元一次方程组的解满足,写出的一个整数值___________.
三、解答题
8.(2023·江苏连云港·统考中考真题)目前,我市对市区居民用气户的燃气收费,以户为基础、年为计算周期设定了如下表的三个气量阶梯:
阶梯
年用气量
销售价格
备注
第一阶梯
(含400)的部分
2.67元
若家庭人口超过4人的,每增加1人,第一、二阶梯年用气量的上限分别增加.
第二阶梯
(含1200)的部分
3.15元
第三阶梯
以上的部分
3.63元
(1)一户家庭人口为3人,年用气量为,则该年此户需缴纳燃气费用为__________元;
(2)一户家庭人口不超过4人,年用气量为,该年此户需缴纳燃气费用为元,求与的函数表达式;
(3)甲户家庭人口为3人,乙户家庭人口为5人,某年甲户、乙户缴纳的燃气费用均为3855元,求该年乙户比甲户多用多少立方米的燃气?(结果精确到)
9.(2023·江苏扬州·统考中考真题)近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.
(1)甲、乙两种头盔的单价各是多少元?
(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?
10.(2023·重庆·统考中考真题)某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种.甲区的农田比乙区的农田多10000亩,甲区农田的和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.
(1)求甲、乙两区各有农田多少亩?
(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒亩,求派往甲区每架次无人机平均喷洒多少亩?
11.(2023·河南·统考中考真题)国家“双减”政策实施后.某校开展了丰富多彩的社团活动,其中分同学报名参加了中国象棋和国棋两个社团,该校为参加社团的同学去商场购买中国象棋和围棋.已知购买5副中国象模和3副围棋共花费165元,购买4副中国象棋和6副围棋共花费240元.
(1)求每副中国象棋和围棋的价格各是多少元.
(2)在购买时,恰逢商场推出了优惠活动,活动的方案如下:
方案一:购买围棋不超过20副时,围棋和中国象棋均按原价付款;超过20副时,超过的部分每购买1副围棋赠送1副中国象棋;
方案二:按购买总金额的八折付款.
若该校共需购买40副围棋和副中国象棋,请通过计算说明该校选择哪种方案更划算.
12.(2023·四川成都·统考中考真题)年月日至月日,第届世界大学生运动会将在成都举行.“当好东道主,热情迎嘉宾”,成都某知名小吃店计划购买,两种食材制作小吃.已知购买千克种食材和千克种食材共需元,购买千克种食材和千克种食材共需元.
(1)求,两种食材的单价;
(2)该小吃店计划购买两种食材共千克,其中购买种食材千克数不少于种食材千克数的倍,当,两种食材分别购买多少千克时,总费用最少?并求出最少总费用.
13.(2023·山西·统考中考真题)风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞.该大桥限重标志牌显示,载重后总质量超过30吨的车辆禁止通行.现有一辆自重8吨的卡车,要运输若干套某种设备,每套设备由1个A部件和3个B部件组成,这种设备必须成套运输.已知1个A部件和2个B部件的总质量为2.8吨,2个A部件和3个B部件的质量相等.
(1)求1个A部件和1个B部件的质量各是多少;
(2)卡车一次最多可运输多少套这种设备通过此大桥?
14.(2023·湖北黄冈·统考中考真题)创建文明城市,构建美好家园.为提高垃圾分类意识,幸福社区决定采购A,B两种型号的新型垃圾桶.若购买3个A型垃圾桶和4个B型垃圾桶共需要580元,购买6个A型垃圾桶和5个B型垃圾桶共需要860元.
(1)求两种型号垃圾桶的单价;
(2)若需购买A,B两种型号的垃圾桶共200个,总费用不超过15000元,至少需购买A型垃圾桶多少个?
15.(2023·安徽·统考中考真题)根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨,乙地降价元,已知销售单价调整前甲地比乙地少元,调整后甲地比乙地少元,求调整前甲、乙两地该商品的销售单价.
参考答案
1.A
2.C
3.B
4.D
5.C
6.
7.7(答案不唯一)
8.(1)∵,
∴该年此户需缴纳燃气费用为:(元),
故答案为:534;
(2)关于的表达式为
(3)∵,
∴甲户该年的用气量达到了第三阶梯.
由(2)知,当时,,解得.
又∵,
且,
∴乙户该年的用气量达到第二阶梯,但末达到第三阶梯.
设乙户年用气量为.则有,
解得,
∴.
答:该年乙户比甲户多用约26立方米的燃气.
9.(1)解:设购买乙种头盔的单价为x元,则甲种头盔的单价为元,根据题意,得
解得,,
,
答:甲、乙两种头盔的单价各是65元, 54元.
(2)解:设购m只甲种头盔,此次购买头盔的总费用最小,设总费用为w,
则,解得,故最小整数解为,
,
∵,则w随m的增大而增大,
∴时,w取最小值,最小值.
答:购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.
10.(1)解:设甲区有农田亩,则乙区有农田亩,
由题意得:,
解得,
则,
答:甲区有农田50000亩,乙区有农田40000亩.
(2)解:设派往甲区每架次无人机平均喷洒亩,派往甲区的无人机架次为架次,则派往乙区每架次无人机平均喷洒亩,派往乙区的无人机架次为架次,
由题意得:,即,
解得,
答:派往甲区每架次无人机平均喷洒100亩.
11.(1)解:设每副中国象棋的价格是元,每副围棋的价格是元.
根据题意,得,
解得,
答:每副中国象棋的价格是15元,每副围棋的价格是30元;
(2)解:设选择方案一所需的费用为元,选择方案二所需的费用为元.
由题意,可知;.
若,则,解得.
若,则,解得.
若,则,解得.
∵,∴若,则.
∴当时,该校选择方案一更划算;当时,该校选择两种方案一样划算;当时,该校选择方案二更划算.
12.(1)解:设种食材的单价为元,种食材的单价为元,根据题意得,
,
解得:,
答:种食材的单价为元,种食材的单价为元;
(2)解:设种食材购买千克,则种食材购买千克,根据题意,
解得:,
设总费用为元,根据题意,
∵,随的增大而增大,
∴当时,最小,
∴最少总费用为(元)
13.(1)解:设一个A部件的质量为吨,一个部件的质量为吨.
根据题意,得,解得.
答:一个A部件的质量为1.2吨,一个部件的质量为0.8吨.
(2)解:设该卡军一次可运输套这种设备通过此大桥.
根据题意,得.解得.
因为为整数,取最大值,所以.
答:该卡车一次最多可运输6套这种设备通过此大桥.
14.(1)解:设A,B两种型号的单价分别为元和元,
由题意:,
解得:,
∴A,B两种型号的单价分别为60元和100元;
(2)设购买A型垃圾桶个,则购买B型垃圾桶个,
由题意:,
解得:,
∴至少需购买A型垃圾桶125个.
15.解:设调整前甲、乙两地该商品的销售单价分别为元,根据题意得,
解得:
答:调整前甲、乙两地该商品的销售单价分别为元
【中考真题汇编】2019-2023年 5年真题分项汇编 初中数学 专题04 一元一次方程与二元一次方程组(教师版+学生版).zip: 这是一份【中考真题汇编】2019-2023年 5年真题分项汇编 初中数学 专题04 一元一次方程与二元一次方程组(教师版+学生版).zip,文件包含中考真题汇编2019-2023年5年真题分项汇编专题04一元一次方程与二元一次方程组解析版docx、中考真题汇编2019-20235年真题分项汇编专题04一元一次方程与二元一次方程组学生版docx等2份试卷配套教学资源,其中试卷共54页, 欢迎下载使用。
中考数学真题汇编第1期03 分式、二次根式: 这是一份中考数学真题汇编第1期03 分式、二次根式,共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
真题重组卷03——2023年中考数学真题汇编重组卷(福建专用): 这是一份真题重组卷03——2023年中考数学真题汇编重组卷(福建专用),文件包含真题重组卷03-2023年中考数学真题汇编重组卷福建专用解析版docx、真题重组卷03-2023年中考数学真题汇编重组卷福建专用原卷版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。