北师大版九年级上册6 利用相似三角形测高精品课后练习题
展开北师大版数学 九上 第四章 4.6利用相似三角形测高 测试卷
一, 选择题(共36分)
1.某一时刻,身高1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得某旗杆的影长是5m,则该旗杆的高度是( )
A.1.25m B.10m C.20m D.8m
2.小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为( )
A.10米 B.12米 C.15米 D.22.5米
3.如图,小东用长为3.2m的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为( )
A.12m B.10m C.8m D.7m
4.一个油桶高0.8m,桶内有油,一根长lm的木棒从桶盖小口插入桶内,一端到达桶底,另一端恰好在小口处,抽出木棒量得浸油部分长0.8m,则油桶内的油的高度是( )
A.0.8m B.0.64m
C.1m D.0.7m
5.小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B时,要使眼睛O,准星A,目标B在同一条直线上,如图所示,在射击时,小明有轻微的抖动,致使准星A偏离到 ,若OA=0.2米,OB=40米, =0.0015米,则小明射击到的点B′偏离目标点B的长度BB′为( )
A.3米 B.0.3米 C.0.03米 D.0.2米
6.如图是用卡钳测量容器内径的示意图,已知卡钳的四个端点 A , B , C , D 到支点 O 的距离满足 AOOC=OBOD=2 ,且 OA=OB .现在只要测得卡钳外端 C , D 两个端点之间的距离,就可以计算出容器的内径 d 的大小。这种测量原理用到了( )
A.图形的旋转 B.图形的平移
C.图形的轴对称 D.图形的相似
7.如图,小红同学正在使用手电筒进行物理光学实验,地面上从左往右依次是墙、木板和平面镜.手电筒的灯泡位于点G处,手电筒的光从平面镜上点B处反射后,恰好经过木板的边缘点F,落在墙上的点E处.点E到地面的高度ED=3.5m,点F到地面的高度FC=1.5m,灯泡到木板的水平距离AC=5.4m,墙到木板的水平距离为CD=4m.已知光在镜面反射中的入射角等于反射角,图中点A、B、C、D在同一水平面上,则灯泡到地面的高度GA为( )
A.1.2m B.1.3m C.1.4m D.1.5m
8.如图,在数学实践活动课上,小明同学打算通过测量树的影长计算树的高度,阳光下他测得长1m的竹竿落在地面上的影长为0.9m,在同一时刻测量树的影长时,他发现树的影子有一部分落在地面上,还有一部分落在墙面上,他测得这棵树落在地面上的影长BD为2.7m,落在墙面上的影长CD为1.0m,则这棵树的高度是( )
A.6.0m B.5.0m C.4.0m D.3.0m
9.已知:如图,小华在打羽毛球时,扣球要使球恰好能打过网,而且落在离网前4米的位置处,则球拍击球的高度h应为( )
A.1.55m B.3.1m C.3.55m D.4m
10.如图,某次课外实践活动中,小红在地面点B处利用标杆FC测量一旗杆ED的高度.小红眼睛点A与标杆顶端点F,旗杆顶端点E在同一直线上,点B,C,D也在同一条直线上.已知小红眼睛到地面距离AB=1.6米,标杆高FC=3.8米,且BC=1米,CD=7米,则旗杆ED的高度为( )
A.15.4米 B.17米 C.17.6米 D.19.2米
11.如图,△ABC中,AD⊥BC于D,且有下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC;(3)CDAD=ACAB;(4)AB2=BD·BC其中一定能够判定△ABC是直角三角形的共有( )
A.3个 B.2个 C.1个 D.0个
12.如图,正方形ABCD中,E为BC的中点,CG⊥DE于G,BG延长交CD于点F,CG延长交BD于点H,交AB于N.下列结论:①DE=CN;②BHDH=12 ;③S△DEC=3S△BNH;④∠BGN=45°;⑤GN+EG=2BG .其中正确结论的个数有( )
A.2个 B.3个 C.4个 D.5个
二. 填空题(共24分)
13.测量附中国旗杆的高度,小宇的测量方法如下:如图,将直角三角形硬纸板△DEF的斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上.测得DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.6米,到旗杆的水平距离DC=18米.按此方法,可计算出旗杆的高度为 米.
14.墙壁CD上D处有一盏灯(如图),小明站在A站测得他的影长与身长相等都为1.5m,他向墙壁走1m到B处时发现影子刚好落在A点,则灯泡与地面的距离CD= m.
15.如图,△ABC中边BC=10,高AD=8,正方形EFNM的四个顶点分别为△ABC三边上的点(点E,F为BC上的点,点N为AC上的点,点M为AB上的点),则正方形EFNM的边长为 .
16.如图,在△ABC中,∠C=90∘,AC=30cm,BC=25cm,动点P从点C出发,沿CA方向运动,速度是2cm/s;动点Q从点B出发,沿BC方向运动,速度是1cm/s,若P、Q同时出发,点P运动到点A时,P、Q两点同时停止运动,在 s时,△ABC与△PQC相似.
17.如图,阳光通过窗口照到室内,在地面上留下1.6m宽的亮区DE,已知亮区一边到窗下的墙脚距离CE=3.6m,窗高AB=1.2m,那么窗口底边离地面的高度BC= m.
18.△ABC中,∠A=90°,AB=AC,BC=63cm,现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示,已知剪得的纸条中有一张是正方形,则这张正方形纸条是从下往上数第 张.
三. 解答题(共60分)
19.(8分)如图,零件的外径为16cm,要求它的壁厚x,需要先求出内径AB,现用一个交叉钳(AD与BC相等)去量,若测得OA:OD=OB:OC=3:1,CD=5cm,你能求零件的壁厚x吗?
20.(8分).小明利用灯光下自己的影子长度来测量路灯的高度.如图,CD和EF是两等高的路灯,相距27m,身高1.5m的小明(AB)站在两路灯之间(D、B、F共线),被两路灯同时照射留在地面的影长BQ=4m,BP=5m.
(1)小明距离路灯多远?
(2)求路灯高度.
21.(8分)在一次数学活动课上,小芳到操场上测量旗杆的高度,她的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,利用她所测数据,求旗杆的高.
22.(8分)如图,某同学想测量旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长1.5米,在同时刻测量旗杆的影长时,因旗杆靠近一楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上影长为21米,留在墙上的影高为2米,求旗杆的高度.
23.(8分)雯雯和笑笑想利用皮尺和所学的几何知识测量学校操场上旗杆的高度,他们的测量方案如下:当雯雯站在旗杆正前方地面上的点D处时,笑笑在地面上找到一点G,使得点G、雯雯的头顶C以及旗杆的顶部A三点在同一直线上,并测得DG=2.8m;然后雯雯向前移动1.5m到达点F处,笑笑同样在地面上找到一点H,使得点H、雯雯的头顶E以及旗杆的顶部A三点在同一直线上,并测得GH=1.7m,已知图中的所有点均在同一平面内,AB⊥BH,CD⊥BH,EF⊥BH,雯雯的身高CD=EF=1.6m.请你根据以上测量数据,求该校旗杆的高度AB.
24.(8分)青龙寺是西安最著名的櫻花观赏地,品种达到了13种之多,每年3、4月陆续开放的櫻花让这里成为了花的海洋.一天,小明和小刚去青龙寺游玩,想利用所学知识测量一棵樱花树的高度(櫻花树四周被围起来了,底部不易到达).小明在F处竖立了一根标杆 EF ,小刚走到C处时,站立在C处看到标杆顶端E和树的顶端B在一条直线上.此时测得小刚的眼睛到地面的距离 DC=1.6 米;然后,小刚在C处蹲下,小明平移标杆到H处时,小刚恰好看到标杆顶端G和树的顶端B在一条直线上,此时测得小刚的眼睛到地面的距离 MC=0.8 米.已知 EF=GH=2.4 米, CF=2 米, FH=1.6 米,点C、F、H、A在一条直线上,点M在 CD 上, CD⊥AC , EF⊥AC , GH⊥AC , AB⊥AC .根据以上测量过程及测量数据,请你求出这棵樱花树 AB 的高度.
25.(12分)用一个大小形状固定的不等边锐角三角形纸,剪出一个最大的正方形纸备用.甲同学说:“当正方形的一边在最长边时,剪出的内接正方形最大”;乙同学说:“当正方形的一边在最短边上时,剪出的内接正方形最大”;丙同学说:“不确定,剪不出这样的正方形纸.”你认为谁说的有道理,请证明.(假设图中△ABC的三边a,b,c,且a>b>c,三边上的高分别记为ha,hb,hc)
初中数学北师大版九年级上册6 利用相似三角形测高课后复习题: 这是一份初中数学北师大版九年级上册6 利用相似三角形测高课后复习题,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学北师大版九年级上册6 利用相似三角形测高课时练习: 这是一份初中数学北师大版九年级上册6 利用相似三角形测高课时练习,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
北师大版九年级上册第四章 图形的相似6 利用相似三角形测高随堂练习题: 这是一份北师大版九年级上册第四章 图形的相似6 利用相似三角形测高随堂练习题,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。