资料中包含下列文件,点击文件名可预览资料内容
还剩11页未读,
继续阅读
所属成套资源:【冲刺双一流】备战2023年高考数学二轮复习核心专题讲练(新高考版)
成套系列资料,整套一键下载
- 第3讲 三角函数与解三角形解答题(重难点题型突破)-【冲刺双一流】备战2023年高考数学二轮复习核心专题讲练(新高考版) 其他 0 次下载
- 第4讲 素养提升之三角函数与解三角形选填专项冲刺(重难点题型突破)-【冲刺双一流】备战2023年高考数学二轮复习核心专题讲练(新高考版) 其他 0 次下载
- 第1讲 等差(等比)数列-【冲刺双一流】备战2023年高考数学二轮复习核心专题讲练(新高考版) 其他 0 次下载
- 第2讲 数列解答题(数列求通项)-【冲刺双一流】备战2023年高考数学二轮复习核心专题讲练(新高考版) 其他 0 次下载
- 第3讲 数列解答题(数列求和)-【冲刺双一流】备战2023年高考数学二轮复习核心专题讲练(新高考版) 其他 0 次下载
第5讲 素养提升之三角函数与解三角形新情境、新考法专项冲刺(新高考考向探究)-【冲刺双一流】备战2023年高考数学二轮复习核心专题讲练(新高考版)
展开
第5讲 素养提升之三角函数与解三角形新情境、新考法专项冲刺
目录
一、新情境
角度1:紧跟社会热点
角度2:聚焦科技前沿
角度3:结合生产实践
角度4:渗透数学文化
角度5:强调五育并举
二、新考法
角度1:以高观点为背景
角度2:以给定定义、热点信息为背景
角度3:考查开放、探究精神
角度4:考查数学运算、数据分析得核心素养
角度5:相近学科融合
一、新情境
角度1:紧跟社会热点
1.(2022·重庆巴蜀中学高三阶段练习)李子坝站的“单轨穿楼”是重庆轨道交通的一大特色,吸引众多游客来此打卡拍照.如图所示,李明为了测量李子坝站站台距离地面的高度AB,采用了如下方法:在观景台的D点处测得站台A点处的仰角为60°;沿直线BD后退12米后,在F点处测得站台A点处的仰角为45°.已知李明的眼睛距离地面高度为CD=EF=1.6米,则李子坝站站台的高度AB约为( )(精确到小数点后1位)(近似数据:)
A.米 B.米 C.米 D.米
2.(2022·河南宋基信阳实验中学高三阶段练习(理))冬残奥会闭幕式上,中国式浪漫再现,天干地支时辰钟表盘再现,由定音鼓构成的“表盘”形象上,名残健共融表演者用行为模拟“指针”每圈个时间刻度的行进轨迹.若以图中点与圆心连线为始边,某时刻指向第,,名残健共融表演者的“指针”为终边的角分别记为,则的值为( )
A. B. C. D.
3.(多选)(2022·全国·高一课时练习)气候变化是人类面临的全球性问题,随着各国二氧化碳排放,温室气体猛增,对生命系统形成威胁,我国积极参与全球气候治理,加速全社会绿色低碳转型,力争2030年前实现碳达峰,2060年前实现碳中和目标.某校高一数学研究性学习小组研究的课题是“碳排放与气候变化问题”,研究小组观察记录某天从到的温度变化,其变化曲线近似满足函数(,,),该函数图象如图,则( )
A.
B.函数的最小正周期为
C.,
D.若是偶函数,则的最小值为2
角度2:聚焦科技前沿
1.(2022·上海市嘉定区第二中学高三期中)在信息时代,信号处理是非常关键的技术,而信号处理背后的“功臣”就是正弦型函数.函数的图象可以近似的模拟某种信号的波形,则下列判断中不正确的是( )
A.函数为周期函数,且为其一个周期
B.函数的图象关于点对称
C.函数的图象关于直线对称
D.函数的导函数的最大值为4.
2.(2022·河北保定·高二阶段练习)基础设施建设,往往代表一个国家综合的实力和底蕴,是一个国家赖以生存的命脉.近年来,中国大型基建工程创造了许多世界奇迹,同时"中国速度"也引发外媒和外国网友的追捧.中国的发展速度让世界惊叹,基建实力更是世界闻名.在全球拥有了"基建狂魔"的名号.如图,一建筑工地有墙面与水平面垂直并交于,长为米的钢丝连接面内一点与面内的点,、距均为3米,,分别为的三等分点,若在平面内一点向、连绳子,则最短长 _______米.
角度3:结合生产实践
1.(多选)(2022·湖北·高三期中)水车是我国劳动人民创造发明的一种灌溉工具,作为中国农耕文化的组成部分,充分体现了中华民族的创造力,见证了中国农业文明.水车的外形酷似车轮,在轮的边缘装有若干个水斗,借助水势的运动惯性冲动水车缓缓旋转,将水斗内的水逐级提升.如图,某水车轮的半径为米,圆心距水面的高度为米,水车按逆时针方向匀速转动,每分钟转动圈,当其中的一个水斗到达最高点时开始计时,设水车转动(分钟)时水斗距离水面的高度(水面以上为正,水面以下为负)为(米),下列选项正确的是( )
A. B.
C.若水车的转速减半,则其周期变为原来的 D.在旋转一周的过程中,水斗距离水面高度不低于米的时间为秒
角度4:渗透数学文化
1.(2022·广东肇庆·高三阶段练习)《周髀算经》是我国最早的数学典籍,书中记载:我国早在商代时期,数学家商高就发现了勾股定理,亦称商高定理三国时期数学家赵爽创制了如图1的“勾股圆方图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的那个小正方形组成),用数形结合法给出了勾股定理的详细证明.现将“勾股圆方图”中的四条股延长相同的长度得到图2.在图2中,若,,G,F两点间的距离为,则“勾股圆方图”中小正方形的面积为( )
A.9 B.4 C.3 D.8
2.(2022·湖北黄冈·高三阶段练习)中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互转化、对称统一的形式美、和谐美.在平面直角坐标系中,如果一个函数的图象能够将某个圆的周长和面积同时平分,那么称这个函数为这个圆的“优美函数”.则下列关于“优美函数”的说法中正确的有( )
①函数可以是某个圆的“优美函数”
②()可以同时是无数个圆的“优美函数”
③函数可以是无数个圆的“优美函数”
④若函数是“优美函数”,则函数的图象一定是中心对称图形
A.①② B.①④ C.①②③ D.②③
3.(2022·江苏扬州·高三期中)我国古代数学家赵爽在注解《周髀算经》一书时介绍了“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的大正方形如图所示,记直角三角形较小的锐角为α,大正方形的面积为,小正方形的面积为,若,则的值为( )
A. B. C. D.
4.(2022·内蒙古赤峰·高三阶段练习(理))材料一:已知三角形三边长分别为,则三角形的面积为,其中.这个公式被称为海伦一秦九韶公式.
材料二:阿波罗尼奥斯(Apollonius)在《圆锥曲线论》中提出椭圆定义:我们把平面内与两个定点的距离的和等于常数(大于的点的轨迹叫做椭圆.
根据材料一或材料二解答:已知中,,则面积的最大值为( )
A.6 B.10 C.12 D.20
5.(2022·四川泸州·模拟预测(文))“割圆术”是我国古代计算圆周率的一种方法.在公元年左右,由魏晋时期的数学家刘徽发明.其原理就是利用圆内接正多边形的面积逐步逼近圆的面积,进而求.当时刘微就是利用这种方法,把的近似值计算到和之间,这是当时世界上对圆周率的计算最精确的数据.这种方法的可贵之处就是利用已知的、可求的来逼近未知的、要求的,用有限的来逼近无穷的.为此,刘微把它概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”.这种方法极其重要,对后世产生了巨大影响,在欧洲,这种方法后来就演变为现在的微积分.根据“割圆术”,若用正六十边形来估算圆周率,则的近似值是( )(精确到)(参考数据)
A. B. C. D.
6.(2022·江苏泰州·高三期中)有一个内角为的等腰三角形被称为黄金三角形,它的较短边与较长边之比为黄金分割比.由上述信息可求得的值为( )
A. B. C. D.
角度5:强调五育并举
1.(2022·全国·高三专题练习)如图是集合中的点在平面上运动时留下的阴影,中间形如“水滴”部分的平面面积为( )
A. B.
C. D.
2.(2022·江西·高三开学考试(理))天文计算的需要,促进了三角学和几何学的发展.10世纪的科学家比鲁尼的著作《马苏德规律》一书中记录了在三角学方面的一些创造性的工作.比鲁尼给出了一种测量地球半径的方法:先用边长带有刻度的正方形ABCD测得一座山的高(如图①),再于山顶T处悬一直径为SP且可以转动的圆环(如图②),从山顶T处观测地平线上的一点I,测得.由此可以算得地球的半径( )
A. B. C. D.
3.(2022·福建泉州·高三期中)剪纸,又叫刻纸,是一种镂空艺术,是中国汉族最古老的民间艺术之一.如图,纸片为一圆形,直径,需要剪去四边形,可以经过对折、沿裁剪、展开就可以得到.
已知点在圆上且.要使得该剪纸作品面积最大,的长应为________.
4.(多选)(2022·辽宁·葫芦岛市第六高级中学高一阶段练习)笛卡尔在信中用一个能画出心形曲线的方程向公主表达爱意的故事广为流传,其实能画出心型曲线的方程有很多种.如图所示的心形曲线,其方程为,设点A的坐标满足此方程,记OA与x轴的非负半轴所成的角为,则当时,的值可以是( )
A. B. C. D.
5.(多选)(2022·辽宁·高二开学考试)某同学为测量数学楼的高度,先在地面选择一点C,测量出对教学楼AB的仰角,再分别执行如下四种测量方案,则利用测量数据可表示出教学楼高度的方案有( )
A.从点C向教学楼前进a米到达点D,测量出角;
B.在地面上另选点D,测量出角,,米;
C.在地面上另选点D,测量出角,米;
D.从过点C的直线上(不过点B)另选点D、E,测量出米,,.
6.(2022·上海师大附中高三阶段练习)七巧板是一种古老的中国传统智力玩具,如图,边长为4的七巧板左下角为坐标原点,其中各点的横、纵坐标均为整数,当函数经过的顶点数最多时,的值为_________
7.(2022·云南普洱·高二期末)按如图连接圆上的五等分点,得到优美的“五角星”,图形中含有很多美妙的数学关系式,例如图中点H即弦的黄金分割点,其黄金分割比为,且五角星的每个顶角都为等.由此信息可以求出的值为___________.
二、新考法
角度1:以高观点为背景
1.(多选)(2022·广东·揭东二中高三阶段练习)函数的定义域为I,若存在,使得,则称是函数的二阶不动点,也叫稳定点.下列函数中存在唯一稳定点的函数是( )
A. B.
C. D.
2.(2022·重庆·西南大学附中高三阶段练习)1643年法国数学家费马曾提出了一个著名的几何问题:已知一个三角形,求作一点,使其到这个三角形的三个顶点的距离之和为最小.它的答案是:当三角形的三个角均小于120°时,所求的点为三角形的正等角中心(即该点与三角形的三个顶点的连线段两两成角120°),该点称为费马点.已知中,其中,,为费马点,则的取值范围是______.
角度2:以给定定义、热点信息为背景
1.(多选)(2022·湖南省临澧县第一中学高三阶段练习)定义:为集合相对常数的“余弦方差”.若,则集合相对的“余弦方差”的取值可能为( )
A. B. C. D.
2.(多选)(2022·广东·揭东二中高三阶段练习)定义一:关于一个函数,若存在两条距离为的直线和,使得在时,恒成立,则称函数在内有一个宽度为的通道.定义二:若一个函数,关于任意给定的正数,都存在一个实数,使得函数在内有一个宽度为的通道,则称在正无穷处有永恒通道.则下列在正无穷处有永恒通道的函数为( )
A. B. C. D.
3.(2022·江西·景德镇一中高二期中(文))对集合和常数,把定义为集合相对于的“正弦方差",则集合相对于的“正弦方差”为( )
A. B. C. D.与有关的值
4.(2022·河北秦皇岛·三模)定义:不等式的解集为,若中只有唯一整数,则称为“和谐解集”.若关于的不等式在上存在“和谐解集”,则实数的可能取值为( )
A. B. C. D.
5.(多选)(2022·辽宁·高二开学考试)某同学为测量数学楼的高度,先在地面选择一点C,测量出对教学楼AB的仰角,再分别执行如下四种测量方案,则利用测量数据可表示出教学楼高度的方案有( )
A.从点C向教学楼前进a米到达点D,测量出角;
B.在地面上另选点D,测量出角,,米;
C.在地面上另选点D,测量出角,米;
D.从过点C的直线上(不过点B)另选点D、E,测量出米,,.
6.(2022·上海·华师大二附中高三开学考试)对开区间,定义,当实数集合为段(为正整数)互不相交的开区间的并集时,定义,若对任意上述形式的的子集,总存在,使得,其中,则的最大值为___________.
角度3:考查开放、探究精神
1.(2022·江西赣州·高三期中(理))奔驰定理:已知点O是内的一点,若的面积分别记为,则.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车的logo很相似,故形象地称其为“奔驰定理”.如图,已知O是的垂心,且,则( )
A. B. C. D.
2.(多选)(2022·安徽省宿松中学高二开学考试)如图,为内任意一点,角的对边分别为,则总有优美等式成立,此结论称为三角形中的奔驰定理.由此判断以下命题中,正确的有( )
A.若是的重心,则有
B.若,则是的内心
C.若,则
D.若是的外心,且,则
角度4:考查数学运算、数据分析得核心素养
1.(2022·北京师大附中高三阶段练习)、、是函数的图象上不重合的三点,若函数满足:当时,总有、、三点共线,则称函数是“零和共线函数”.下列命题正确的是_______.
①一次函数都是“零和共线函数”;
②二次函数都不是“零和共线函数”;
③存在,使得是“零和共线函数”;
④对任意,都是“零和共线函数”.
角度5:相近学科融合
1.(2022·安徽·合肥一六八中学高三阶段练习)我们平时听到的乐音不只是一个音在响,而是许多个音的结合,称为复合音.复合音的产生是因为发声体在全段振动,产生频率为的基音的同时,其各部分如二分之一、三分之一、四分之一部分也在振动,产生的频率恰好是全段振动频率的倍数,如,,等.这些音叫谐音,因为其振幅较小,一般不易单独听出来,所以我们听到的声音的函数为.则函数的周期为( )
A. B. C. D.
2.(2022·陕西·无高三期中(文))三相交流电是我们生活中比较常见的一种供电方式,其瞬时电流(单位:安培)与时间(单位:秒)满足函数关系式:(其中为供电的最大电流,单位:安培;表示角频率,单位:弧度/秒;为初始相位),该三相交流电的频率(单位:赫兹)与周期(单位:秒)满足关系式.某实验室使用5赫兹的三相交流电,经仪器测得在秒与秒的瞬时电流之比为,且在秒时的瞬时电流恰好为1安培,若,则该实验室所使用的三相交流电的最大电流为( )
A.2安培 B.安培 C.3安培 D.安培
3.(2022·新疆石河子一中高三阶段练习(理))《墨经・经说下》中有这样一段记载:“光之人,煦若射.下者之人也高,高者之之人也下.足蔽下光,故成景于上;首蔽上光,故成影于下.在远近有端,与于光,故景库内也.”这对小孔成像有了第一次的描述.如图为一次小孔成像实验,已知物距:像距=6:1,,,则像高为( )
A.1 B. C. D.
4.(2022·全国·高三专题练习)阻尼器是一种以提供阻力达到减震效果的专业工程装置.我国第一高楼上海中心大厦的阻尼器减震装置,被称为“镇楼神器”,如图1由物理学知识可知,某阻尼器的运动过程可近似为单摆运动,其离开平衡位置的位移y(m)和时间t(s)的函数关系为,如图2,若该阻尼器在摆动过程中连续三次到达同一位置的时间分别为,且,,则在一个周期内阻尼器离开平衡位置的位移大于0.5m的总时间为 ( )
A. B. C. D.
5.(2022·江苏连云港·高三期中)10世纪阿拉伯天文学家阿尔库希设计出一种方案,通过两个观察者异地同时观测同一颗小天体来测定小天体的高度.如图,有两个观察者在地球上A,B两地同时观测到一颗卫星S,仰角分别为∠SAM和∠SBM(MA,MB表示当地的水平线,即为地球表面的切线),设地球半径为R,的长度为,∠SAM=30°,∠SBM=45°,则卫星S到地面的高度为______.
目录
一、新情境
角度1:紧跟社会热点
角度2:聚焦科技前沿
角度3:结合生产实践
角度4:渗透数学文化
角度5:强调五育并举
二、新考法
角度1:以高观点为背景
角度2:以给定定义、热点信息为背景
角度3:考查开放、探究精神
角度4:考查数学运算、数据分析得核心素养
角度5:相近学科融合
一、新情境
角度1:紧跟社会热点
1.(2022·重庆巴蜀中学高三阶段练习)李子坝站的“单轨穿楼”是重庆轨道交通的一大特色,吸引众多游客来此打卡拍照.如图所示,李明为了测量李子坝站站台距离地面的高度AB,采用了如下方法:在观景台的D点处测得站台A点处的仰角为60°;沿直线BD后退12米后,在F点处测得站台A点处的仰角为45°.已知李明的眼睛距离地面高度为CD=EF=1.6米,则李子坝站站台的高度AB约为( )(精确到小数点后1位)(近似数据:)
A.米 B.米 C.米 D.米
2.(2022·河南宋基信阳实验中学高三阶段练习(理))冬残奥会闭幕式上,中国式浪漫再现,天干地支时辰钟表盘再现,由定音鼓构成的“表盘”形象上,名残健共融表演者用行为模拟“指针”每圈个时间刻度的行进轨迹.若以图中点与圆心连线为始边,某时刻指向第,,名残健共融表演者的“指针”为终边的角分别记为,则的值为( )
A. B. C. D.
3.(多选)(2022·全国·高一课时练习)气候变化是人类面临的全球性问题,随着各国二氧化碳排放,温室气体猛增,对生命系统形成威胁,我国积极参与全球气候治理,加速全社会绿色低碳转型,力争2030年前实现碳达峰,2060年前实现碳中和目标.某校高一数学研究性学习小组研究的课题是“碳排放与气候变化问题”,研究小组观察记录某天从到的温度变化,其变化曲线近似满足函数(,,),该函数图象如图,则( )
A.
B.函数的最小正周期为
C.,
D.若是偶函数,则的最小值为2
角度2:聚焦科技前沿
1.(2022·上海市嘉定区第二中学高三期中)在信息时代,信号处理是非常关键的技术,而信号处理背后的“功臣”就是正弦型函数.函数的图象可以近似的模拟某种信号的波形,则下列判断中不正确的是( )
A.函数为周期函数,且为其一个周期
B.函数的图象关于点对称
C.函数的图象关于直线对称
D.函数的导函数的最大值为4.
2.(2022·河北保定·高二阶段练习)基础设施建设,往往代表一个国家综合的实力和底蕴,是一个国家赖以生存的命脉.近年来,中国大型基建工程创造了许多世界奇迹,同时"中国速度"也引发外媒和外国网友的追捧.中国的发展速度让世界惊叹,基建实力更是世界闻名.在全球拥有了"基建狂魔"的名号.如图,一建筑工地有墙面与水平面垂直并交于,长为米的钢丝连接面内一点与面内的点,、距均为3米,,分别为的三等分点,若在平面内一点向、连绳子,则最短长 _______米.
角度3:结合生产实践
1.(多选)(2022·湖北·高三期中)水车是我国劳动人民创造发明的一种灌溉工具,作为中国农耕文化的组成部分,充分体现了中华民族的创造力,见证了中国农业文明.水车的外形酷似车轮,在轮的边缘装有若干个水斗,借助水势的运动惯性冲动水车缓缓旋转,将水斗内的水逐级提升.如图,某水车轮的半径为米,圆心距水面的高度为米,水车按逆时针方向匀速转动,每分钟转动圈,当其中的一个水斗到达最高点时开始计时,设水车转动(分钟)时水斗距离水面的高度(水面以上为正,水面以下为负)为(米),下列选项正确的是( )
A. B.
C.若水车的转速减半,则其周期变为原来的 D.在旋转一周的过程中,水斗距离水面高度不低于米的时间为秒
角度4:渗透数学文化
1.(2022·广东肇庆·高三阶段练习)《周髀算经》是我国最早的数学典籍,书中记载:我国早在商代时期,数学家商高就发现了勾股定理,亦称商高定理三国时期数学家赵爽创制了如图1的“勾股圆方图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的那个小正方形组成),用数形结合法给出了勾股定理的详细证明.现将“勾股圆方图”中的四条股延长相同的长度得到图2.在图2中,若,,G,F两点间的距离为,则“勾股圆方图”中小正方形的面积为( )
A.9 B.4 C.3 D.8
2.(2022·湖北黄冈·高三阶段练习)中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互转化、对称统一的形式美、和谐美.在平面直角坐标系中,如果一个函数的图象能够将某个圆的周长和面积同时平分,那么称这个函数为这个圆的“优美函数”.则下列关于“优美函数”的说法中正确的有( )
①函数可以是某个圆的“优美函数”
②()可以同时是无数个圆的“优美函数”
③函数可以是无数个圆的“优美函数”
④若函数是“优美函数”,则函数的图象一定是中心对称图形
A.①② B.①④ C.①②③ D.②③
3.(2022·江苏扬州·高三期中)我国古代数学家赵爽在注解《周髀算经》一书时介绍了“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的大正方形如图所示,记直角三角形较小的锐角为α,大正方形的面积为,小正方形的面积为,若,则的值为( )
A. B. C. D.
4.(2022·内蒙古赤峰·高三阶段练习(理))材料一:已知三角形三边长分别为,则三角形的面积为,其中.这个公式被称为海伦一秦九韶公式.
材料二:阿波罗尼奥斯(Apollonius)在《圆锥曲线论》中提出椭圆定义:我们把平面内与两个定点的距离的和等于常数(大于的点的轨迹叫做椭圆.
根据材料一或材料二解答:已知中,,则面积的最大值为( )
A.6 B.10 C.12 D.20
5.(2022·四川泸州·模拟预测(文))“割圆术”是我国古代计算圆周率的一种方法.在公元年左右,由魏晋时期的数学家刘徽发明.其原理就是利用圆内接正多边形的面积逐步逼近圆的面积,进而求.当时刘微就是利用这种方法,把的近似值计算到和之间,这是当时世界上对圆周率的计算最精确的数据.这种方法的可贵之处就是利用已知的、可求的来逼近未知的、要求的,用有限的来逼近无穷的.为此,刘微把它概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”.这种方法极其重要,对后世产生了巨大影响,在欧洲,这种方法后来就演变为现在的微积分.根据“割圆术”,若用正六十边形来估算圆周率,则的近似值是( )(精确到)(参考数据)
A. B. C. D.
6.(2022·江苏泰州·高三期中)有一个内角为的等腰三角形被称为黄金三角形,它的较短边与较长边之比为黄金分割比.由上述信息可求得的值为( )
A. B. C. D.
角度5:强调五育并举
1.(2022·全国·高三专题练习)如图是集合中的点在平面上运动时留下的阴影,中间形如“水滴”部分的平面面积为( )
A. B.
C. D.
2.(2022·江西·高三开学考试(理))天文计算的需要,促进了三角学和几何学的发展.10世纪的科学家比鲁尼的著作《马苏德规律》一书中记录了在三角学方面的一些创造性的工作.比鲁尼给出了一种测量地球半径的方法:先用边长带有刻度的正方形ABCD测得一座山的高(如图①),再于山顶T处悬一直径为SP且可以转动的圆环(如图②),从山顶T处观测地平线上的一点I,测得.由此可以算得地球的半径( )
A. B. C. D.
3.(2022·福建泉州·高三期中)剪纸,又叫刻纸,是一种镂空艺术,是中国汉族最古老的民间艺术之一.如图,纸片为一圆形,直径,需要剪去四边形,可以经过对折、沿裁剪、展开就可以得到.
已知点在圆上且.要使得该剪纸作品面积最大,的长应为________.
4.(多选)(2022·辽宁·葫芦岛市第六高级中学高一阶段练习)笛卡尔在信中用一个能画出心形曲线的方程向公主表达爱意的故事广为流传,其实能画出心型曲线的方程有很多种.如图所示的心形曲线,其方程为,设点A的坐标满足此方程,记OA与x轴的非负半轴所成的角为,则当时,的值可以是( )
A. B. C. D.
5.(多选)(2022·辽宁·高二开学考试)某同学为测量数学楼的高度,先在地面选择一点C,测量出对教学楼AB的仰角,再分别执行如下四种测量方案,则利用测量数据可表示出教学楼高度的方案有( )
A.从点C向教学楼前进a米到达点D,测量出角;
B.在地面上另选点D,测量出角,,米;
C.在地面上另选点D,测量出角,米;
D.从过点C的直线上(不过点B)另选点D、E,测量出米,,.
6.(2022·上海师大附中高三阶段练习)七巧板是一种古老的中国传统智力玩具,如图,边长为4的七巧板左下角为坐标原点,其中各点的横、纵坐标均为整数,当函数经过的顶点数最多时,的值为_________
7.(2022·云南普洱·高二期末)按如图连接圆上的五等分点,得到优美的“五角星”,图形中含有很多美妙的数学关系式,例如图中点H即弦的黄金分割点,其黄金分割比为,且五角星的每个顶角都为等.由此信息可以求出的值为___________.
二、新考法
角度1:以高观点为背景
1.(多选)(2022·广东·揭东二中高三阶段练习)函数的定义域为I,若存在,使得,则称是函数的二阶不动点,也叫稳定点.下列函数中存在唯一稳定点的函数是( )
A. B.
C. D.
2.(2022·重庆·西南大学附中高三阶段练习)1643年法国数学家费马曾提出了一个著名的几何问题:已知一个三角形,求作一点,使其到这个三角形的三个顶点的距离之和为最小.它的答案是:当三角形的三个角均小于120°时,所求的点为三角形的正等角中心(即该点与三角形的三个顶点的连线段两两成角120°),该点称为费马点.已知中,其中,,为费马点,则的取值范围是______.
角度2:以给定定义、热点信息为背景
1.(多选)(2022·湖南省临澧县第一中学高三阶段练习)定义:为集合相对常数的“余弦方差”.若,则集合相对的“余弦方差”的取值可能为( )
A. B. C. D.
2.(多选)(2022·广东·揭东二中高三阶段练习)定义一:关于一个函数,若存在两条距离为的直线和,使得在时,恒成立,则称函数在内有一个宽度为的通道.定义二:若一个函数,关于任意给定的正数,都存在一个实数,使得函数在内有一个宽度为的通道,则称在正无穷处有永恒通道.则下列在正无穷处有永恒通道的函数为( )
A. B. C. D.
3.(2022·江西·景德镇一中高二期中(文))对集合和常数,把定义为集合相对于的“正弦方差",则集合相对于的“正弦方差”为( )
A. B. C. D.与有关的值
4.(2022·河北秦皇岛·三模)定义:不等式的解集为,若中只有唯一整数,则称为“和谐解集”.若关于的不等式在上存在“和谐解集”,则实数的可能取值为( )
A. B. C. D.
5.(多选)(2022·辽宁·高二开学考试)某同学为测量数学楼的高度,先在地面选择一点C,测量出对教学楼AB的仰角,再分别执行如下四种测量方案,则利用测量数据可表示出教学楼高度的方案有( )
A.从点C向教学楼前进a米到达点D,测量出角;
B.在地面上另选点D,测量出角,,米;
C.在地面上另选点D,测量出角,米;
D.从过点C的直线上(不过点B)另选点D、E,测量出米,,.
6.(2022·上海·华师大二附中高三开学考试)对开区间,定义,当实数集合为段(为正整数)互不相交的开区间的并集时,定义,若对任意上述形式的的子集,总存在,使得,其中,则的最大值为___________.
角度3:考查开放、探究精神
1.(2022·江西赣州·高三期中(理))奔驰定理:已知点O是内的一点,若的面积分别记为,则.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车的logo很相似,故形象地称其为“奔驰定理”.如图,已知O是的垂心,且,则( )
A. B. C. D.
2.(多选)(2022·安徽省宿松中学高二开学考试)如图,为内任意一点,角的对边分别为,则总有优美等式成立,此结论称为三角形中的奔驰定理.由此判断以下命题中,正确的有( )
A.若是的重心,则有
B.若,则是的内心
C.若,则
D.若是的外心,且,则
角度4:考查数学运算、数据分析得核心素养
1.(2022·北京师大附中高三阶段练习)、、是函数的图象上不重合的三点,若函数满足:当时,总有、、三点共线,则称函数是“零和共线函数”.下列命题正确的是_______.
①一次函数都是“零和共线函数”;
②二次函数都不是“零和共线函数”;
③存在,使得是“零和共线函数”;
④对任意,都是“零和共线函数”.
角度5:相近学科融合
1.(2022·安徽·合肥一六八中学高三阶段练习)我们平时听到的乐音不只是一个音在响,而是许多个音的结合,称为复合音.复合音的产生是因为发声体在全段振动,产生频率为的基音的同时,其各部分如二分之一、三分之一、四分之一部分也在振动,产生的频率恰好是全段振动频率的倍数,如,,等.这些音叫谐音,因为其振幅较小,一般不易单独听出来,所以我们听到的声音的函数为.则函数的周期为( )
A. B. C. D.
2.(2022·陕西·无高三期中(文))三相交流电是我们生活中比较常见的一种供电方式,其瞬时电流(单位:安培)与时间(单位:秒)满足函数关系式:(其中为供电的最大电流,单位:安培;表示角频率,单位:弧度/秒;为初始相位),该三相交流电的频率(单位:赫兹)与周期(单位:秒)满足关系式.某实验室使用5赫兹的三相交流电,经仪器测得在秒与秒的瞬时电流之比为,且在秒时的瞬时电流恰好为1安培,若,则该实验室所使用的三相交流电的最大电流为( )
A.2安培 B.安培 C.3安培 D.安培
3.(2022·新疆石河子一中高三阶段练习(理))《墨经・经说下》中有这样一段记载:“光之人,煦若射.下者之人也高,高者之之人也下.足蔽下光,故成景于上;首蔽上光,故成影于下.在远近有端,与于光,故景库内也.”这对小孔成像有了第一次的描述.如图为一次小孔成像实验,已知物距:像距=6:1,,,则像高为( )
A.1 B. C. D.
4.(2022·全国·高三专题练习)阻尼器是一种以提供阻力达到减震效果的专业工程装置.我国第一高楼上海中心大厦的阻尼器减震装置,被称为“镇楼神器”,如图1由物理学知识可知,某阻尼器的运动过程可近似为单摆运动,其离开平衡位置的位移y(m)和时间t(s)的函数关系为,如图2,若该阻尼器在摆动过程中连续三次到达同一位置的时间分别为,且,,则在一个周期内阻尼器离开平衡位置的位移大于0.5m的总时间为 ( )
A. B. C. D.
5.(2022·江苏连云港·高三期中)10世纪阿拉伯天文学家阿尔库希设计出一种方案,通过两个观察者异地同时观测同一颗小天体来测定小天体的高度.如图,有两个观察者在地球上A,B两地同时观测到一颗卫星S,仰角分别为∠SAM和∠SBM(MA,MB表示当地的水平线,即为地球表面的切线),设地球半径为R,的长度为,∠SAM=30°,∠SBM=45°,则卫星S到地面的高度为______.
相关资料
更多