年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    人教版九年级数学上册同步精品讲义及试卷 第04课 因式分解法

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 第04课 因式分解法(教师版).docx
    • 第04课 因式分解法(学生版).docx
    第04课  因式分解法(教师版)第1页
    第04课  因式分解法(教师版)第2页
    第04课  因式分解法(教师版)第3页
    第04课  因式分解法(学生版)第1页
    第04课  因式分解法(学生版)第2页
    第04课  因式分解法(学生版)第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学第二十一章 一元二次方程21.2 解一元二次方程21.2.3 因式分解法优秀课后测评

    展开

    这是一份数学第二十一章 一元二次方程21.2 解一元二次方程21.2.3 因式分解法优秀课后测评,文件包含第04课因式分解法教师版docx、第04课因式分解法学生版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
    第04课 因式分解法
    目标导航


    课程标准
    (1)会用因式分解法解一元二次方程.
    (2)能选用合适的方法解一元二次方程.
    知识精讲

    知识点01 因式分解法

    因式分解法解一元二次方程
    根据
    将一元二次方程因式分解,使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,即,则;
    实质
    将一元二次方程转化为两个一元一次方程
    1、适合用因式分解法求解的一元二次方程的特点
    (1)方程一边为0;
    (2)另一边易于分解成两个一次因式乘积的形式.
    【注意】
    (1)因式分解法只能解某些特殊的一元二次方程,不是所有的一元二次方程都能用因式分解法求解.
    (2)用因式分解法解一元二次方程时,一定要把方程的右边化为0,否则会出现错误.
    (3)用因式分解法解方程时,不要将方程两边同时除以含有未知数的式子,这样容易造成丢根现象.

    2、利用因式分解解一元二次方程的常用方法
    (1)提公因式法:把多项式各项的公因式提到括号外面,将多项式写成因式乘积的形式.
    (2)逆用平方差公式和完全平方公式来分解因式.
    3、因式分解法解一元二次方程的一般步骤
    步骤
    示例:
    解释
    1、移

    移项,将方程右边化为0
    2、分

    将方程左边因式分解
    3、化

    令每个因式都为零
    4、解

    解这两个一元一次方程
    知识点02 简单的十字相乘法

    ①化简下列整式乘法:




    【总结】
    那么对于二次三项式=
    ②化简下列整式乘法:




    【总结】
    那么对于二次三项式=
    ③化简下列整式乘法:




    【总结】
    那么对于二次三项式=;
    那么对于二次三项式=
    【注意】
    简单的十字相乘法,必须要让一元二次方程的a=1.
    知识点03 灵活选用合适的方法解一元二次方程
    方法
    特点
    举例
    直接开方法
    解一元二次方程最简单的方法.若方程可化为 的形式,则宜选用直接开平方法求解

    配方法
    解一元二次方程最基本的方法,它适用于解所有的一元二次方程.配方法要先配方,再降次.通过配方法可以推出求根公式

    公式法
    解一元二次方程最通用的方法,它适用于解所有的一元二次方程.公式法是直接利用求根公式解方程

    因式分解法
    解一元二次方程较简单的方法.当方程的一边为0,另一边易化为两个一次因式的积时,就可优先选用因式分解法求解

    【注意】
    一元二次方程的解法选择
    1.选择顺序:直接开平方法→因式分解法→公式法.
    2.若方程为(mx+n)2=p(p≥0)型时,用直接开平方法.
    3.若方程右边为0,而左边易于分解成两个一次因式的积时,可用因式分解法.
    4.若方程二次项系数为1,一次项系数为偶数,可用配方法.
    5.若用直接开平方法和因式分解法不能求解时,可用公式法.
    能力拓展

    考法01 因式分解法
    【例题1】方程 x(x+5)=0 的根是(       )
    A.x=5 B.x=﹣5 C.x1=0,x2=5 D.x1=0,x2=﹣5
    【答案】D
    【解析】
    解:方程x(x+5)=0,
    可得x=0或x+5=0,
    解得:=0,或=-5.
    故选D.
    【即学即练1】三角形两边长分别为2和4,第三边长是方程x(x﹣4)﹣2(x﹣4)=0的解,则这个三角形周长为(   )
    A.8                      B.8和10               C.10                         D.8 或10
    【答案】C
    【解析】
    x(x﹣4)﹣2(x﹣4)=0,解得:x=4或2.分两种情况讨论:
    ①三角形的三边为2、2、4时,不符合三角形三边关系定理,此时不能组成三角形;
    ②三角形的三边为2、4、4时,符合三角形三边关系定理,此时能组成三角形,组成的三角形周长为2+4+4=10.
    故选C.
    【即学即练2】一元二次方程的根是(       )
    A.﹣1 B.2 C.1和2 D.﹣1和2
    【答案】D
    【解析】




    ,x2=-1.
    故选:D.
    【即学即练3】解方程,最简便的方法是(       )
    A.配方法 B.公式法 C.因式分解法 D.直接开平方法
    【答案】C
    【解析】
    ∵方程中有公因式(x-1),故可采用因式分解法求解,
    故选C.
    【即学即练4】用因式分解法解下列方程:       
    (1) ;       
    (2) ;       
    (3) ;       
    (4) .
    【答案】(1);           
    (2);
    (3);
    (4) .
    【解析】
    (1),
    ∴ ,
    ∴ ;           
    (2),
    ∴ ,
    ∴ ,
    ∴ ;
    (3),
    ∴ ,
    ∴ ,
    ∴ ,
    ∴ ;
    (4) ,
    ∴ ,
    ∴ ,
    ∴ .
    考法02 十字相乘法
    【例题2】关于x的一元二次方程x2﹣4x+3=0的解为(  )
    A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=1,x2=3 D.x1=﹣1,x2=﹣3
    【答案】C
    【解析】
    x2-4x+3=0,
    分解因式得:(x-1)(x-3)=0,
    解得:x1=1,x2=3,
    故选C.
    【即学即练1】已知等腰三角形两边长分别是方程的两个根,则三角形周长为(       )
    A.6 B.8 C.10 D.8或10
    【答案】C
    【解析】
    x2﹣6x+8=0,

    解得x1=4,x2=2,
    当腰是2时,三边分别2,2,4,不能组成三角形;
    当腰是4时,三边分为4,4,2,能组成等腰三角形;
    所以此等腰三角形的周长是4+4+2=10.
    故选C.
    【即学即练2】已知等腰三角形的两边长分别是一元二次方程的两根,则该等腰三角形的底边长为(       )
    A.2 B.4 C.8 D.2或4
    【答案】A
    【解析】
    解:x2-6x+8=0
    (x-4)(x-2)=0
    解得:x=4或x=2,
    当等腰三角形的三边为2,2,4时,不符合三角形三边关系定理,此时不能组成三角形;
    当等腰三角形的三边为2,4,4时,符合三角形三边关系定理,此时能组成三角形,
    所以三角形的底边长为2,
    故选:A.
    考法03 选择适当方法解一元二次方程
    【例题3】选择适当方法解下列方程
    (1)(3x﹣1)2=(x﹣1)2
    (2)3x(x﹣1)=2﹣2x
    【答案】(1)x1=0,x2=;(2)x1=1,x2=﹣.
    【解析】
    (1)3x﹣1=±(x﹣1),
    即3x﹣1=x﹣1或3x﹣1=﹣(x﹣1),
    所以x1=0,x2=;
    (2)3x(x﹣1)+2(x﹣1)=0,
    (x﹣1)(3x+2)=0,
    x﹣1=0或3x+2=0,
    所以x1=1,x2=﹣.
    【即学即练1】用适当的方法解下列方程
    (1)x2+10x+21=0
    (2)4x2-4x+1=x2+6x+9
    【答案】(1)x1=-7, x2=-3;(2)x1=-, x2=4
    【解析】
    解:(1)x2+10x+21=0;
    (x+3)(x+7)=0;
    x+3=0,x+7=0,
    ,;
    (2)4x2-4x+1=x2+6x+9;


    (3x+2)(x-4)=0;
    ;.
    考法04 整体代换
    【例题4】若,求的值.
    【答案】4
    【解析】
    解:设,则有,
    即,.
    ∴,.
    ∵,∴不合题意,舍去.
    ∴.
    【即学即练1】解方程:(x2+x)2+(x2+x)=6.
    【答案】x1=﹣2,x2=1
    【解析】
    解:设x2+x=y,则原方程变形为y2+y﹣6=0,
    解得y1=﹣3,y2=2.
    ①当y=2时,x2+x=2,即x2+x﹣2=0,
    解得x1=﹣2,x2=1;
    ②当y=﹣3时,x2+x=﹣3,即x2+x+3=0,
    ∵△=12﹣4×1×3=1﹣12=﹣11<0,
    ∴此方程无解;
    ∴原方程的解为x1=﹣2,x2=1.
    分层提分

    题组A 基础过关练
    1.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为(  )
    A.12 B.15 C.12或15 D.不能确定
    【答案】B
    【解析】
    解:方程变形得:,
    解得:,,
    当3为腰,6为底时,三角形三边为3,3,6,不能构成三角形,舍去;
    当3为底,6为腰时,三角形三边为6,6,3,周长为6+6+3=15,
    故选:B.
    2.若关于x的一元二次方程有一个根是0,那么m的值为(       )
    A.2 B.3 C.3或2 D.
    【答案】A
    【解析】
    解:由一元二次方程的定义得:
    解得
    关于x的一元二次方程有一个根为0,
    ∴,
    解得或(与不符,舍去),
    故选A.
    3.一个等腰三角形的两条边长分别是方程的两根,则该等腰三角形的周长是( )
    A.12 B.9 C.13 D.12或9
    【答案】A
    【解析】
    解:因式分解可得:(x-2)(x-5)=0
    解得:,
    当2为底,5为腰时,则三角形的周长为2+5+5=12;
    当5为底,2为腰时,则无法构成三角形,
    故选:A
    4.若菱形ABCD的一条对角线长为8,边CD的长是方程x2﹣10x+24=0的一个根,则该菱形ABCD的周长为(  )
    A.16 B.24 C.16或24 D.48
    【答案】B
    【解析】
    解:如图所示:
    ∵四边形ABCD是菱形,
    ∴AB=BC=CD=AD,
    ∵x2﹣10x+24=0,
    因式分解得:(x﹣4)(x﹣6)=0,
    解得:x=4或x=6,
    分两种情况:
    ①当AB=AD=4时,4+4=8,不能构成三角形;
    ②当AB=AD=6时,6+6>8,
    ∴菱形ABCD的周长=4AB=24.
    故选:B.

    5.一元二次方程的两根为、,那么二次三项式可分解为(       )
    A. B. C. D.
    【答案】C
    【解析】
    若一元二次方程x2+px+q=0的两根为3、4,
    那么有:(x-3)(x-4)=0,
    ∴x2+px+q=(x-3)(x-4).
    故选C.
    6.若关于x的一元二次方程x2+mx+n=0的两个实根分别为5,﹣6,则二次三项式x2+mx+n可分解为(  )
    A.(x+5)(x﹣6) B.(x﹣5)(x+6) C.(x+5)(x+6) D.(x﹣5)(x﹣6)
    【答案】B
    【解析】
    根据题意可得
    解得
    所以二次三项式为x2+x-30
    因式分解为x2+x-30=(x﹣5)(x+6)
    故选B.
    7.一个等腰三角形的腰和底边长分别是方程的两根,则该等腰三角形的周长是________.
    【答案】14
    【解析】
    解:,
    (x-2)(x-6)=0,
    x1=2,x2=6,
    当腰长为2时,三角形的三边为2,2,6,不符合三角形的三角关系,舍去;
    当腰长为6时,三角形的三边关系为6,6,2,符合三角形的三角关系,
    则周长为:6+6+2=14,
    故答案为:14.
    8.已知等腰三角形的腰和底的长分别是一元二次方程x2﹣4x+3=0的根,则该三角形的周长是_____.
    【答案】7
    【解析】
    x2﹣4x+3=0,(x﹣3)(x﹣1)=0,x﹣3=0或x﹣1=0,所以x1=3,x2=1.
    ①当三角形的腰为3,底为1时,三角形的周长为3+3+1=7;
    ②当三角形的腰为1,底为3时不符合三角形三边的关系,舍去.
    所以三角形的周长为7.
    故答案为7.
    9.解下列方程   
    (1)(用配方法)
    (2)(因式分解法)
    (3)(公式法)
    (4)(直接开平方法)
    【答案】(1),;(2),;(3),;(4)
    【解析】
    解:(1),



    所以,;

    或,
    所以,;
    (3),

    所以,;
    (4),
    所以.
    10.解下列一元二次方程:
    (1)5x﹣2=(2﹣5x)(3x+4)
    (2)4(x+3)2=25(x﹣2)2
    【答案】(1)x1=    x2=﹣ ;(2)= 或=.
    【解析】
    (1)解:原式=(2﹣5x)+(2﹣5x)(3x+4)=0
    ∴(2﹣5x)(1+3x+4)=0
    解得:x1=    x2=﹣
    (2)解:4(x+3)2﹣25(x﹣2)2=0,
    [2(x+3)+5(x﹣2)][2(x+3)﹣5(x﹣2)]=0,
    ∴(7x﹣4)(-3x+16)=0
    ∴= 或=.
    11.已知关于x的方程x2 -(m+1)x+2(m-1)=0,
    (1)求证:无论m取何值时,方程总有实数根;
    (2)若等腰三角形腰长为4,另两边恰好是此方程的根,求此三角形的另外两条边长.
    【答案】证明见解析 4和2
    【解析】
    (1)证明:∵△=[﹣(m+1)]2﹣4×2(m﹣1)=m2﹣6m+9=(m﹣3)2≥0,
    ∴无论m取何值,这个方程总有实数根;
    (2)等腰三角形的腰长为4,将x=4代入原方程,得:16﹣4(m+1)+2(m﹣1)=0,
    解得:m=5,
    ∴原方程为x2﹣6x+8=0,
    解得:x1=2,x2=4.
    组成三角形的三边长度为2、4、4;
    所以三角形另外两边长度为4和2.
    题组B 能力提升练
    1.在解一元二次方程x2+px+q=0时,小红看错了常数项q,得到方程的两个根是﹣3,1.小明看错了一次项系数P,得到方程的两个根是5,﹣4,则原来的方程是(  )
    A.x2+2x﹣3=0 B.x2+2x﹣20=0 C.x2﹣2x﹣20=0 D.x2﹣2x﹣3=0
    【答案】B
    【解析】
    解: 小红看错了常数项q,得到方程的两个根是﹣3,1,
    所以此时方程为: 即:
    小明看错了一次项系数P,得到方程的两个根是5,﹣4,
    所以此时方程为: 即:
    从而正确的方程是:
    故选:
    2.如图,在一次函数的图象上取一点P,作PA⊥x轴于点A,PB⊥y轴于点B,且矩形PBOA的面积为5,则在x轴的上方满足上述条件的点P共有()

    A.1个 B.2个 C.3个 D.4个
    【答案】C
    【解析】
    解:①当0<x<6时,设点P(x,﹣x+6),
    ∴矩形PBOA的面积为5,
    ∴x(﹣x+6)=5,化简,
    解得,,
    ∴P1(1,5),P2(5,1),
    ②当x<0时,设点P(x,﹣x+6),
    ∴矩形PBOA的面积为5,
    ∴﹣x(﹣x+6)=5,
    化简,
    解得,(舍去),
    ∴P3(,),
    ∴在x轴的上方满足上述条件的点P的个数共有3个.
    故选:C.
    3.已知,则等于(   )
    A.或 B.6或1 C.或1 D.2或3
    【答案】A
    【解析】



    ∴=或.
    故选A.
    4.方程的解是(   )
    A.2或0 B.±2或0 C.2 D.-2或0
    【答案】B
    【解析】
    解:∵,
    ∴,
    ∴或或,
    故选:B.
    5.已知2是关于x的方程x2﹣(5+m)x+5m=0的一个根,并且这个方程的两个根恰好是等腰△ABC的两条边长,则△ABC的周长为(  )
    A.9 B.12 C.9或12 D.6或12或15
    【答案】B
    【解析】
    把x=2代入方程x2−(5+m)x+5m=0得4−2(5+m)+5m=0,解得m=2,
    方程化为x2−7x+10=0,解得x1=2,x2=5,
    因为这个方程的两个根恰好是等腰△ABC的两条边长,
    所以等腰△ABC的腰长为5,底边长为2,
    所以△ABC的周长为5+5+2=12.
    故选B.
    6.已知,则的值是_____________.
    【答案】5或10
    【解析】
    解:同时除以:


    ∴ ,
    7.解方程:.
    【答案】
    【解析】
    解:移项得:,
    两边平方得:,
    整理得:,
    解得:,,
    经检验不是原方程的解,舍去,
    ∴是原方程的解.
    题组C 培优拔尖练
    1.阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:
    x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).
    理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,
    因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.
    解决问题:求方程x3﹣5x+2=0的解为_____.
    【答案】x=2或x=﹣1+或x=﹣1﹣.
    【解析】
    解:∵x3﹣5x+2=0,
    ∴x3﹣4x﹣x+2=0,
    ∴x(x2﹣4)﹣(x﹣2)=0,
    ∴x(x+2)(x﹣2)﹣(x﹣2)=0,
    则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,
    ∴x﹣2=0或x2+2x﹣1=0,
    解得x=2或x=﹣1,
    故答案为:x=2或x=﹣1+或x=﹣1﹣.
    2.已知,,,求值.
    【答案】5或13或10
    【解析】


    ∴或


    ∴或

    ∴当时,;当时,或
    ∴或13或10.
    3.已知,,为有理数,且多项式能够写成的形式.
    (1)求的值.
    (2)求的值.
    (3)若,,为整数,且,试求,,的值.
    【答案】(1);(2);(3),,.
    【解析】
    (1)是的一个因式,
    ,即,是方程的解,

    得:③,

    (2)由③得:④,
    ④代入①得:⑤,

    (3),


    解得:,
    又,均为大于的整数,
    可取的值有,,,,,
    又为正整数,
    ,,
    则,
    ,,.
    4.解方程:(x-2 013)(x-2 014)=2 015×2 016.
    【答案】原方程的解为x1=4 029,x2=-2.
    【解析】
    解:由题意得:
    方程组 的解一定是原方程的解,解得x=4 029,
    方程组的解也一定是原方程的解,解得x=-2,
    ∵原方程最多有两个实数解,
    ∴原方程的解为x1=4 029,x2=-2.
    5.解方程:(x-1)(x-2)(x-3)(x-4)=48.
    【答案】x1=,x2=.
    【解析】
    原方程即[(x-1)(x-4)][(x-2)(x-3)]=48,
    即(x2-5x+4)(x2-5x+6)=48.
    设y=x2-5x+5,则原方程变为(y-1)(y+1)=48.
    解得y1=7,y2=-7.
    当x2-5x+5=7时,解得x1=,x2=;
    当x2-5x+5=-7时,Δ=(-5)2-4×1×12=-23

    相关试卷

    数学九年级上册24.2.2 直线和圆的位置关系优秀课后作业题:

    这是一份数学九年级上册24.2.2 直线和圆的位置关系优秀课后作业题,文件包含第23课切线长定理教师版docx、第23课切线长定理学生版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。

    人教版九年级上册第二十四章 圆24.1 圆的有关性质24.1.2 垂直于弦的直径精品复习练习题:

    这是一份人教版九年级上册第二十四章 圆24.1 圆的有关性质24.1.2 垂直于弦的直径精品复习练习题,文件包含第20课垂径定理教师版docx、第20课垂径定理学生版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。

    初中数学人教版九年级上册23.1 图形的旋转优秀同步测试题:

    这是一份初中数学人教版九年级上册23.1 图形的旋转优秀同步测试题,文件包含第16课图形的旋转教师版docx、第16课图形的旋转学生版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map