终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    专题22.17 二次函数图象的平移(直通中考)-2023-2024学年九年级数学上册基础知识专项突破讲与练(人教版)

    立即下载
    加入资料篮
    专题22.17 二次函数图象的平移(直通中考)-2023-2024学年九年级数学上册基础知识专项突破讲与练(人教版)第1页
    专题22.17 二次函数图象的平移(直通中考)-2023-2024学年九年级数学上册基础知识专项突破讲与练(人教版)第2页
    专题22.17 二次函数图象的平移(直通中考)-2023-2024学年九年级数学上册基础知识专项突破讲与练(人教版)第3页
    还剩26页未读, 继续阅读
    下载需要25学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学人教版九年级上册22.1 二次函数的图象和性质综合与测试达标测试

    展开

    这是一份初中数学人教版九年级上册22.1 二次函数的图象和性质综合与测试达标测试,共29页。
    专题22.17 二次函数图象的平移(直通中考)
    【知识要点】
    (1)图象的平移:任意抛物线y=a(x-h)2+k可以由抛物线y=ax2经过平移得到,在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减”.具体平移方法如下:


    一、单选题
    1.(2023·江苏徐州·统考中考真题)在平面直角坐标系中,将二次函数的图象向右平移2个单位长度,再向下平移1个单位长度,所得拋物线对应的函数表达式为(    )
    A. B. C. D.
    2.(2023·四川南充·统考中考真题)若点在抛物线()上,则下列各点在抛物线上的是(    )
    A. B. C. D.
    3.(2022·浙江湖州·统考中考真题)将抛物线向上平移3个单位,所得抛物线的解析式是(  )
    A. B. C. D.
    4.(2022·内蒙古通辽·统考中考真题)在平面直角坐标系中,将二次函数的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为(   )
    A. B.
    C. D.
    5.(2022·四川泸州·统考中考真题)抛物线经平移后,不可能得到的抛物线是(    )
    A. B.
    C. D.
    6.(2022·广西玉林·统考中考真题)小嘉说:将二次函数的图象平移或翻折后经过点有4种方法:
    ①向右平移2个单位长度     ②向右平移1个单位长度,再向下平移1个单位长度
    ③向下平移4个单位长度     ④沿x轴翻折,再向上平移4个单位长度
    你认为小嘉说的方法中正确的个数有(   )
    A.1个 B.2个 C.3个 D.4个
    7.(2022·四川巴中·统考中考真题)函数的图象是由函数的图象轴上方部分不变,下方部分沿轴向上翻折而成,如图所示,则下列结论正确的是(    )
    ① ;②;    ③;④将图象向上平移1个单位后与直线有3个交点.

    A.①② B.①③ C.②③④ D.①③④
    8.(2017·陕西·中考真题)已知抛物线y=x2-2mx-4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为(  )
    A.(1,-5) B.(3,-13) C.(2,-8) D.(4,-20)
    9.(2020·内蒙古呼和浩特·中考真题)关于二次函数,下列说法错误的是(    )
    A.若将图象向上平移10个单位,再向左平移2个单位后过点,则
    B.当时,y有最小值
    C.对应的函数值比最小值大7
    D.当时,图象与x轴有两个不同的交点
    10.(2012·广西桂林·中考真题)如图,把抛物线y=x2沿直线y=x平移个单位后,其顶点在直线上的A处,则平移后的抛物线解析式是( )

    A.y=(x+1)2-1 B.y=(x+1)2+1
    C.y=(x-1)2+1 D.y=(x-1)2-1
    二、填空题
    11.(2022·黑龙江牡丹江·统考中考真题)抛物线向右平移2个单位长度,再向上平移3个单位长度,得到抛物线的顶点坐标是 .
    12.(2022·黑龙江牡丹江·统考中考真题)把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为 .
    13.(2023·黑龙江牡丹江·统考中考真题)将抛物线向下平移1个单位长度,再向右平移 个单位长度后,得到的新抛物线经过原点.
    14.(2021·广东·统考中考真题)把抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为 .
    15.(2021·黑龙江牡丹江·统考中考真题)将抛物线y=x2﹣2x+3向左平移2个单位长度,所得抛物线为 .
    16.(2019·江苏徐州·统考中考真题)已知二次函数的图象经过点,顶点为将该图象向右平移,当它再次经过点时,所得抛物线的函数表达式为 .
    17.(2021·广西来宾·统考中考真题)如图,已知点,,两点,在抛物线上,向左或向右平移抛物线后,,的对应点分别为,,当四边形的周长最小时,抛物线的解析式为 .

    18.(2012·四川广安·中考真题)如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为 .

    三、解答题
    19.(2023·山东东营·统考中考真题)如图,抛物线过点,,矩形的边在线段上(点B在点A的左侧),点C,D在抛物线上,设,当时,.
    (1)求抛物线的函数表达式;
    (2)当t为何值时,矩形的周长有最大值?最大值是多少?
    (3)保持时的矩形不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G,H,且直线平分矩形的面积时,求抛物线平移的距离.











    20.(2023·上海·统考中考真题)在平面直角坐标系中,已知直线与x轴交于点A,y轴交于点B,点C在线段上,以点C为顶点的抛物线M:经过点B.
    (1)求点A,B的坐标;
    (2)求b,c的值;
    (3)平移抛物线M至N,点C,B分别平移至点P,D,联结,且轴,如果点P在x轴上,且新抛物线过点B,求抛物线N的函数解析式.

















    21.(2023·四川巴中·统考中考真题)在平面直角坐标系中,抛物线经过点和,其顶点的横坐标为.
    (1)求抛物线的表达式.
    (2)若直线与轴交于点,在第一象限内与抛物线交于点,当取何值时,使得有最大值,并求出最大值.
    (3)若点为抛物线的对称轴上一动点,将抛物线向左平移个单位长度后,为平移后抛物线上一动点.在()的条件下求得的点,是否能与、、构成平行四边形?若能构成,求出点坐标;若不能构成,请说明理由.




    22.(2022·上海·统考中考真题)已知:经过点,.
    (1)求函数解析式;
    (2)平移抛物线使得新顶点为(m>0).
    ①倘若,且在的右侧,两抛物线都上升,求的取值范围;
    ②在原抛物线上,新抛物线与轴交于,时,求点坐标.







    23.(2022·河北·统考中考真题)如图,点在抛物线C:上,且在C的对称轴右侧.
    (1)写出C的对称轴和y的最大值,并求a的值;
    (2)坐标平面上放置一透明胶片,并在胶片上描画出点P及C的一段,分别记为,.平移该胶片,使所在抛物线对应的函数恰为.求点移动的最短路程.











    24.(2023·江西·统考中考真题)综合与实践
    问题提出:某兴趣小组开展综合实践活动:在中,,D为上一点,,动点P以每秒1个单位的速度从C点出发,在三角形边上沿匀速运动,到达点A时停止,以为边作正方形设点P的运动时间为,正方形的而积为S,探究S与t的关系
    (1)初步感知:如图1,当点P由点C运动到点B时,
    ①当时,_______.
    ②S关于t的函数解析式为_______.
    (2)当点P由点B运动到点A时,经探究发现S是关于t的二次函数,并绘制成如图2所示的图象请根据图象信息,求S关于t的函数解析式及线段的长.
    (3)延伸探究:若存在3个时刻()对应的正方形的面积均相等.
    ①_______;
    ②当时,求正方形的面积.





























    参考答案
    1.B
    【分析】根据二次函数图象的平移“左加右减,上加下减”可进行求解.
    解:由二次函数的图象向右平移2个单位长度,再向下平移1个单位长度,所得拋物线对应的函数表达式为;
    故选B.
    【点拨】本题主要考查二次函数图象的平移,熟练掌握二次函数图象的平移是解题的关键.
    2.D
    【分析】观察抛物线和抛物线可以发现,它们通过平移得到,故点通过相同的平移落在抛物线上,从而得到结论.
    解:∵抛物线是抛物线()向左平移1个单位长度得到
    ∴抛物线上点向左平移1个单位长度后,会在抛物线上
    ∴点在抛物线上
    故选:D
    【点拨】本题考查函数图象与点的平移,通过函数解析式得到平移方式是解题的关键.
    3.A
    【分析】根据二次函数变化规律即可解答.
    解:∵抛物线向上平移3个单位,
    ∴平移后的解析式为:.
    故选:A.
    【点拨】本题主要考查了二次函数图像的平移,掌握平移规律“左加右减,上加下减”是解题关键.
    4.D
    【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.
    解:将二次函数的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为
    故选D.
    【点拨】本题考查了抛物线的平移规律.关键是确定平移前后抛物线的顶点坐标,寻找平移规律.
    5.D
    【分析】通过了解平移过程,得到二次函数平移过程中不改变开口大小和开口方向,所以a不变,选出答案即可.
    解:抛物线经平移后,不改变开口大小和开口方向,所以a不变,而D选项中a=-1,不可能是经过平移得到,
    故选:D.
    【点拨】本题考查了二次函数平移的知识点,上加下减,左加右减,熟练掌握方法是解题关键,还要掌握通过平移不能改变开口大小和开口方向,即不改变a的大小.
    6.D
    【分析】根据二次函数图象的平移可依此进行求解问题.
    解:①将二次函数向右平移2个单位长度得到:,把点代入得:,所以该平移方式符合题意;
    ②将二次函数向右平移1个单位长度,再向下平移1个单位长度得到:,把点代入得:,所以该平移方式符合题意;
    ③将二次函数向下平移4个单位长度得到:,把点代入得:,所以该平移方式符合题意;
    ④将二次函数沿x轴翻折,再向上平移4个单位长度得到:,把点代入得:,所以该平移方式符合题意;
    综上所述:正确的个数为4个;
    故选D.
    【点拨】本题主要考查二次函数图象的平移,熟练掌握二次函数图象的平移是解题的关键.
    7.D
    【分析】根据函数图象与x轴交点的横坐标求出对称轴为,进而可得,故①正确;由函数图象与y轴的交点坐标为(0,3),的图象轴上方部分不变,下方部分沿轴向上翻折而成可知c=-3,故②错误;根据对称轴求出b<0,进而可得,故③正确;求出翻折前的二次函数的顶点坐标,然后根据平移的性质可得④正确.
    解:由函数图象可得:与x轴交点的横坐标为-1和3,
    ∴对称轴为,即,
    ∴整理得:,故①正确;
    ∵与y轴的交点坐标为(0,3),
    可知,开口向上,图中函数图象是由原函数下方部分沿轴向上翻折而成,
    ∴c=-3,故②错误;
    ∵中a>0,,
    ∴b<0,
    又∵c=-3<0,
    ∴,故③正确;
    设抛物线的解析式为,
    代入(0,3)得:,
    解得:a=-1,
    ∴,
    ∴顶点坐标为(1,4),
    ∵点(1,4)向上平移1个单位后的坐标为(1,5),
    ∴将图象向上平移1个单位后与直线有3个交点,故④正确;
    故选:D.
    【点拨】本题考查了二次函数的图象和性质,掌握二次函数的对称轴公式,顶点坐标的求法是解题的关键.
    8.C
    解:,
    ∴点M(m,﹣m2﹣4),
    ∴点M′(﹣m,m2+4),
    ∴m2+2m2﹣4=m2+4.
    解得m=±2.
    ∵m>0,
    ∴m=2,
    ∴M(2,﹣8).
    故选C.
    【点拨】本题考查二次函数的性质.
    9.C
    【分析】求出二次函数平移之后的表达式,将(4,5)代入,求出a即可判断A;将函数表达式化为顶点式,即可判断B;求出当x=2时的函数值,减去函数最小值即可判断C;写出函数对应方程的根的判别式,根据a值判断判别式的值,即可判断D.
    解:A、将二次函数向上平移10个单位,再向左平移2个单位后,
    表达式为:=,
    若过点(4,5),
    则,解得:a=-5,故选项正确;
    B、∵,开口向上,
    ∴当时,y有最小值,故选项正确;
    C、当x=2时,y=a+16,最小值为a-9,a+16-(a-9)=25,即对应的函数值比最小值大25,故选项错误;
    D、△==9-a,当a<0时,9-a>0,即方程有两个不同的实数根,即二次函数图象与x轴有两个不同的交点,故选项正确,
    故选C.
    【点拨】本题考查了二次函数的图像和性质,涉及到二次函数的基本知识点,解题的关键是掌握二次函数的性质,以及与一元二次方程的关系.
    10.C
    【分析】首先根据A点所在位置设出A点坐标为(m,m)再根据AO=,利用勾股定理求出m的值,然后根据抛物线平移的性质:左加右减,上加下减可得解析式.
    解:∵A在直线y=x上,
    ∴设A(m,m),
    ∵OA= ,
    ∴m2+m2=()2,
    解得:m=±1(m=-1舍去).
    ∴A(1,1).
    ∴抛物线解析式为:y=(x-1)2+1.
    故选C.
    【点拨】此题主要考查了二次函数图象的几何变换,关键是求出A点坐标,掌握抛物线平移的性质:左加右减,上加下减.
    11.(3,5)
    【分析】先求出抛物线的顶点坐标,再根据向右平移横坐标加,向上平移纵坐标加求出平移后的抛物线的顶点坐标即可.
    解:抛物线的顶点坐标为(1,2),
    ∵将抛物线y=(x-1)2+2再向右平移2个单位长度,向上平移3个单位长度,
    ∴平移后的抛物线的顶点坐标为(3,5).
    故答案为:(3,5).
    【点拨】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.
    12.或(答出这两种形式中任意一种均得分)
    【分析】直接根据“上加下减,左加右减”的原则进行解答.
    解:由“左加右减”的原则可知,将二次函数y=2x2的图象向左平移1个单位长度所得抛物线的解析式为:y=2(x+1)2,即y=2(x+1)2;由“上加下减”的原则可知,将抛物线y=2(x+1)2向下平移2个单位长度所得抛物线的解析式为:y=2(x+1)2﹣2,即y=2(x+1)2﹣2.
    故答案为y=2(x+1)2﹣2.
    考点:二次函数图象与几何变换.
    13.2或4/4或2
    【分析】先求出抛物线向下平移1个单位长度后与的交点坐标,然后再求出新抛物线经过原点时平移的长度.
    解:抛物线向下平移1个单位长度后的解析式为,
    令,则,
    解得,,
    ∴抛物线与的交点坐标为和,
    ∴将抛物线向右平移2个单位或4个单位后,新抛物线经过原点.
    故答案为:2或4.
    【点拨】此题考查了二次函数图象的平移与几何变换,利用抛物线解析式的变化规律:左加右减,上加下减是解题关键.
    14.
    【分析】直接根据“上加下减,左加右减”进行计算即可.
    解:抛物线向左平移1个单位长度,
    再向下平移3个单位长度,
    得到的抛物线的解析式为:,
    即:
    故答案为:.
    【点拨】本题主要考查函数图像的平移,熟记函数图像的平移方式“上加下减,左加右减”是解题的关键.
    15.y=x2+2x+3
    【分析】把y=x2﹣2x+3配方得,把顶点向左平移2个单位长度即可得所求抛物线的解析式.
    解:把y=x2﹣2x+3配方得,其顶点坐标为(1,2),抛物线的顶点向左平移2个单位长度后为(-1,2),所以所得抛物线的解析式为,即y=x2+2x+3
    故答案为:y=x2+2x+3.
    【点拨】本题考查了抛物线的平移,抛物线的一般式化顶点式,关键抓住抛物线的顶点平移.
    16..
    【分析】设原来的抛物线解析式为:.利用待定系数法确定函数关系式;然后利用平移规律得到平移后的解析式,将点的坐标代入即可.
    解:设原来的抛物线解析式为:,
    把代入,得,
    解得,
    故原来的抛物线解析式是:,
    设平移后的抛物线解析式为:,
    把代入,得,
    解得(舍去)或,
    所以平移后抛物线的解析式是:,
    故答案是:.
    【点拨】本题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征.利用待定系数法确定原来函数关系式是解题的关键.
    17..
    【分析】先通过平移和轴对称得到当B、E、三点共线时,的值最小,再通过设直线的解析式并将三点坐标代入,当时,求出a的值,最后将四边形周长与时的周长进行比较,确定a的最终取值,即可得到平移后的抛物线的解析式.
    解:∵,,,,
    ∴,,
    由平移的性质可知:,
    ∴四边形的周长为;
    要使其周长最小,则应使的值最小;
    设抛物线平移了a个单位,当a>0时,抛物线向右平移,当a

    相关试卷

    专题22.41 二次函数(全章直通中考)(培优练)-2023-2024学年九年级数学上册基础知识专项突破讲与练(人教版):

    这是一份专题22.41 二次函数(全章直通中考)(培优练)-2023-2024学年九年级数学上册基础知识专项突破讲与练(人教版),共40页。

    专题22.39 二次函数(全章直通中考)(基础练)-2023-2024学年九年级数学上册基础知识专项突破讲与练(人教版):

    这是一份专题22.39 二次函数(全章直通中考)(基础练)-2023-2024学年九年级数学上册基础知识专项突破讲与练(人教版),共22页。

    专题22.22 二次函数图象的对称性(直通中考)-2023-2024学年九年级数学上册基础知识专项突破讲与练(人教版):

    这是一份专题22.22 二次函数图象的对称性(直通中考)-2023-2024学年九年级数学上册基础知识专项突破讲与练(人教版),共38页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map