所属成套资源:备战2024年新高考数学必背知识手册
专题04 指数函数与对数函数(公式、定理、结论图表)-备战2024年新高考数学必背知识手册
展开这是一份专题04 指数函数与对数函数(公式、定理、结论图表)-备战2024年新高考数学必背知识手册,共20页。试卷主要包含了)),指数函数图象问题的处理技巧,比较幂的大小的方法,利用指数函数的单调性解不等式等内容,欢迎下载使用。
指数函数与对数函数(公式、定理、结论图表)
一.根式及相关概念
(1)a的n次方根定义
如果xn=a,那么x叫做a的n次方根,其中n>1,且n∈N*.
(2)a的n次方根的表示
n的奇偶性
a的n次方根的表示符号
a的取值范围
n为奇数
R
n为偶数
±
[0,+∞)
(3)根式
式子叫做根式,这里n叫做根指数,a叫做被开方数.
二.根式的性质(n>1,且n∈N*)
(1)n为奇数时,=a.
(2)n为偶数时,=|a|=
(3)=0.
(4)负数没有偶次方根.
思考:()n中实数a的取值范围是任意实数吗?
提示:不一定,当n为大于1的奇数时,a∈R;
当n为大于1的偶数时,a≥0.
三.分数指数幂的意义
分数指数幂
正分数指数幂
规定:a=(a>0,m,n∈N*,且n>1)
负分数指数幂
规定:a-==
(a>0,m,n∈N*,且n>1)
0的分数指数幂
0的正分数指数幂等于0,
0的负分数指数幂没有意义
思考:在分数指数幂与根式的互化公式a=中,为什么必须规定a>0?
提示:①若a=0,0的正分数指数幂恒等于0,即=a=0,无研究价值.
②若a<0,a=不一定成立,如(-2)=无意义,故为了避免上述情况规定了a>0.
四.有理数指数幂的运算性质
(1)aras=ar+s(a>0,r,s∈Q).
(2)(ar)s=ars(a>0,r,s∈Q).
(3)(ab)r=arbr(a>0,b>0,r∈Q).
五.无理数指数幂
一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.
六.指数函数的概念
一般地,函数y=ax(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R.
七.指数函数的图象和性质
a的范围
a>1
0<a<1
图象
性质
定义域
R
值域
(0,+∞)
过定点
(0,1),即当x=0时,y=1
单调性
在R上是增函数
在R上是减函数
奇偶性
非奇非偶函数
对称性
函数y=ax与y=a-x的图象关于y轴对称
思考1:指数函数y=ax(a>0且a≠1)的图象“升”“降”主要取决于什么?
提示:指数函数y=ax(a>0且a≠1)的图象“升”“降”主要取决于字母a.当a>1时,图象具有上升趋势;当0 思考2::指数函数值随自变量有怎样的变化规律?
提示:指数函数值随自变量的变化规律.
八.对数
(1)指数式与对数式的互化及有关概念:
(2)底数a的范围是a>0,且a≠1.
九.常用对数与自然对数
十.对数的基本性质
(1)负数和零没有对数.
(2)loga 1=0(a>0,且a≠1).
(3)logaa=1(a>0,且a≠1).
思考:为什么零和负数没有对数?
提示:由对数的定义:ax=N(a>0且a≠1),则总有N>0,所以转化为对数式x=logaN时,不存在N≤0的情况.
十一.对数的运算性质
如果a>0,且a≠1,M>0,N>0,那么:
(1)loga(MN)=logaM+logaN;
(2)loga=logaM-logaN;
(3)logaMn=nlogaM(n∈R).
思考:当M>0,N>0时,loga(M+N)=logaM+logaN,loga(MN)=logaM·logaN是否成立?
提示:不一定.
十二.对数的换底公式
若a>0且a≠1;c>0且c≠1;b>0,
则有logab=.
十三.对数函数的概念
函数y=logax(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).
思考1:函数y=2log3x,y=log3(2x)是对数函数吗?
提示:不是,其不符合对数函数的形式.
十四.对数函数的图象及性质
a的范围
0 a>1
图象
定义域
(0,+∞)
值域
R
性质
定点
(1,0),即x=1时,y=0
单调性
在(0,+∞)上是减函数
在(0,+∞)上是增函数
思考2:对数函数的“上升”或“下降”与谁有关?
提示:底数a与1的关系决定了对数函数的升降.
当a>1时,对数函数的图象“上升”;当0 十五.反函数
指数函数y=ax(a>0,且a≠1)与对数函数y=logax(a>0且a≠1)互为反函数.
十六、三种函数模型的性质
y=ax(a>1)
y=logax(a>1)
y=kx(k>0)
在(0,+∞)上的增减性
增函数
增函数
增函数
图象的变化趋势
随x增大逐渐近似与y轴平行
随x增大逐渐近似与x轴平行
保持固定增长速度
增长速度
①y=ax(a>1):随着x的增大,y增长速度越来越快,会远远大于y=kx(k>0)的增长速度,y=logax(a>1)的增长速度越来越慢;
②存在一个x0,当x>x0时,有ax>kx>logax
十七.函数的零点
对于函数y=f(x),把使f(x)=0的实数x叫做函数y=f(x)的零点.
思考1:函数的零点是函数与x轴的交点吗?
提示:不是.函数的零点不是个点,而是一个数,该数是函数图象与x轴交点的横坐标.
十八.方程、函数、函数图象之间的关系
方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.
十九.函数零点存在定理
如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.
思考2:该定理具备哪些条件?
提示:定理要求具备两条:①函数在区间[a,b]上的图象是连续不断的一条曲线;②f(a)·f(b)<0.
二十.二分法的定义
对于在区间[a,b]上图象连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把它的零点所在的区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.
思考:若函数y=f(x)在定义域内有零点,该零点是否一定能用二分法求解?
提示:二分法只适用于函数的变号零点(即函数在零点两侧符号相反),因此函数在零点两侧同号的零点不能用二分法求解,如f(x)=(x-1)2的零点就不能用二分法求解.
二十一.二分法求函数零点近似值的步骤
(1)确定零点x0的初始区间[a,b],验证f(a)f(b)<0.
(2)求区间(a,b)的中点c.
(3)计算f(c),并进一步确定零点所在的区间:
①若f(c)=0(此时x0=c),则c就是函数的零点;
②若f(a)f(c)<0(此时x0∈(a,c)),则令b=c;
③若f(c)f(b)<0(此时x0∈(c,b)),则令a=c.
(4)判断是否达到精确度ε:若|a-b|<ε,则得到零点近似值a(或b);否则重复步骤(2)~(4).
二十二.常用函数模型
常用函数模型
(1)一次函数模型
y=kx+b(k,b为常数,k≠0)
(2)二次函数模型
y=ax2+bx+c(a,b,c为常数,a≠0)
(3)指数函数模型
y=bax+c(a,b,c为常数,b≠0,a>0且a≠1)
(4)对数函数模型
y=mlogax+n(m,a,n为常数,m≠0,a>0且a≠1)
(5)幂函数模型
y=axn+b(a,b为常数,a≠0)
(6)分段函数模型
y=
二十三.建立函数模型解决问题的基本过程
思考:解决函数应用问题的基本步骤是什么?
提示:利用函数知识和函数观点解决实际问题时,一般按以下几个步骤进行:
(一)审题;(二)建模;(三)求模;(四)还原.
这些步骤用框图表示如图:
<解题方法与技巧>
1.带条件根式的化简
(1)有条件根式的化简问题,是指被开方数或被开方的表达式可以通过配方、拆分等方式进行化简.
(2)有条件根式的化简经常用到配方的方法.当根指数为偶数时,在利用公式化简时,要考虑被开方数或被开方的表达式的正负.
典例1: (1)若x<0,则x+|x|+=________.
(2)若-3
(2)结合-3
∴x+|x|+=x-x-1=-1.]
(2)[解] -
=-=|x-1|-|x+3|,
当-3
2.根式与分数指数幂互化的规律
(1)根指数分数指数的分母,被开方数(式)的指数分数指数的分子.
(2)在具体计算时,通常会把根式转化成分数指数幂的形式,然后利用有理数指数幂的运算性质解题.
典例2:将下列根式化成分数指数幂的形式:
(1)(a>0);(2);
(3)(b>0).
[解] (1)原式====a.
(2)原式======x.
(3)原式==b=b.
3.指数幂运算的常用技巧
(1)有括号先算括号里的,无括号先进行指数运算.
(2)负指数幂化为正指数幂的倒数.
(3)底数是小数,先要化成分数;底数是带分数,要先化成假分数,然后要尽可能用幂的形式表示,便于用指数幂的运算性质.
提醒:化简的结果不能同时含有根式和分数指数,也不能既含有分母又含有负指数.
典例3:化简求值:
4.解决条件求值的思路
(1)在利用条件等式求值时,往往先将所求式子进行有目的的变形,或先对条件式加以变形,沟通所求式子与条件等式的联系,以便用整体代入法求值.
(2)在利用整体代入的方法求值时,要注意完全平方公式的应用.
典例4:已知a+a=4,求下列各式的值:
(1)a+a-1;(2)a2+a-2.
[思路点拨]
[解] (1)将a+a=4两边平方,得a+a-1+2=16,故a+a-1=14.
(2)将a+a-1=14两边平方,得a2+a-2+2=196,故a2+a-2=194.
5.判断一个函数是否为指数函数,要牢牢抓住三点:
(1)底数是大于0且不等于1的常数;
(2)指数函数的自变量必须位于指数的位置上;
(3)ax的系数必须为1.
典例5: (1)下列函数中,是指数函数的个数是( )
①y=(-8)x;②y=2x2-1;③y=ax;
④y=2·3x.
A.1 B.2
C.3 D.0
(2)已知函数f(x)为指数函数,且f=,则f(-2)=________.
(1)D (2) [(1)①中底数-8<0,所以不是指数函数;
②中指数不是自变量x,而是x的函数,
所以不是指数函数;
③中底数a,只有规定a>0且a≠1时,才是指数函数;
④中3x前的系数是2,而不是1,所以不是指数函数,故选D.
(2)设f(x)=ax(a>0且a≠1),由f=得a-=,所以a=3,又f(-2)=a-2,所以f(-2)=3-2=.]
6.指数函数图象问题的处理技巧
(1)抓住图象上的特殊点,如指数函数的图象过定点.
(2)利用图象变换,如函数图象的平移变换(左右平移、上下平移).
(3)利用函数的奇偶性与单调性.奇偶性确定函数的对称情况,单调性决定函数图象的走势.
典例6:(1)函数f(x)=ax-b的图象如图所示,其中a,b为常数,则下列结论正确的是( )
A.a>1,b<0 B.a>1,b>0
C.00 D.0 (2)函数y=ax-3+3(a>0,且a≠1)的图象过定点________.
(1)D (2)(3,4) [(1)由于f(x)的图象单调递减,所以0 又0
(2)令x-3=0得x=3,此时y=4.故函数y=ax-3+3(a>0,且a≠1)的图象过定点(3,4).]
7.比较幂的大小的方法
(1)同底数幂比较大小时构造指数函数,根据其单调性比较.
(2)指数相同底数不同时分别画出以两幂底数为底数的指数函数图象,当x取相同幂指数时可观察出函数值的大小.
(3)底数、指数都不相同时,取与其中一底数相同与另一指数相同的幂与两数比较,或借助“1”与两数比较.
(4)当底数含参数时,要按底数a>1和0 典例7:比较下列各组数的大小:
(1)1.52.5和1.53.2;
(2)0.6-1.2和0.6-1.5;
(3)1.70.2和0.92.1;
(4)a1.1与a0.3(a>0且a≠1).
[解] (1)1.52.5,1.53.2可看作函数y=1.5x的两个函数值,由于底数1.5>1,所以函数y=1.5x在R上是增函数,因为2.5<3.2,所以1.52.5<1.53.2.
(2)0.6-1.2,0.6-1.5可看作函数y=0.6x的两个函数值,
因为函数y=0.6x在R上是减函数,
且-1.2>-1.5,所以0.6-1.2<0.6-1.5.
(3)由指数函数性质得,1.70.2>1.70=1,0.92.1<0.90=1,
所以1.70.2>0.92.1.
(4)当a>1时,y=ax在R上是增函数,故a1.1>a0.3;
当0 8.利用指数函数的单调性解不等式
(1)利用指数型函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式.
(2)解不等式af(x)>ag(x)(a>0,a≠1)的依据是指数型函数的单调性,要养成判断底数取值范围的习惯,若底数不确定,就需进行分类讨论,即af(x)>ag(x)⇔
典例8:(1)解不等式3x-1≤2;
(2)已知ax2-3x+1
[解] (1)∵2=-1,∴原不等式可以转化为3x-1≤-1.
∵y=x在R上是减函数,
∴3x-1≥-1,∴x≥0,
故原不等式的解集是{x|x≥0}.
(2)分情况讨论:
①当00,a≠1)在R上是减函数,
∴x2-3x+1>x+6,
∴x2-4x-5>0,
根据相应二次函数的图象可得x<-1或x>5;
②当a>1时,函数f(x)=ax(a>0,a≠1)在R上是增函数,
∴x2-3x+1
9.函数y=af(x)(a>0,a≠1)的单调性的处理技巧
(1)关于指数型函数y=af(x)(a>0,且a≠1)的单调性由两点决定,一是底数a>1还是0 (2)求复合函数的单调区间,首先求出函数的定义域,然后把函数分解成y=f(u),u=φ(x),通过考查f(u)和φ(x)的单调性,求出y=f(φ(x))的单调性.
典例9:判断f(x)=x2-2x的单调性,并求其值域.
[思路点拨] ―→
―→
[解] 令u=x2-2x,则原函数变为y=u.
∵u=x2-2x=(x-1)2-1在(-∞,1]上递减,在[1,+∞)上递增,又∵y=u在(-∞,+∞)上递减,
∴y=x2-2x在(-∞,1]上递增,在[1,+∞)上递减.
∵u=x2-2x=(x-1)2-1≥-1,
∴y=u,u∈[-1,+∞),
∴0 ∴原函数的值域为(0,3].
10.指数式与对数式互化的方法
(1)将指数式化为对数式,只需要将幂作为真数,指数当成对数值,底数不变,写出对数式;
(2)将对数式化为指数式,只需将真数作为幂,对数作为指数,底数不变,写出指数式.
典例10:将下列对数形式化为指数形式或将指数形式化为对数形式:
(1)2-7=;(2)log32=-5;
(3)lg 1 000=3;(4)ln x=2.
[解] (1)由2-7=,可得log2=-7.
(2)由log 32=-5,可得-5=32.
(3)由lg 1 000=3,可得103=1 000.
(4)由ln x=2,可得e2=x.
11.求对数式logaN(a>0,且a≠1,N>0)的值的步骤
(1)设logaN=m;
(2)将logaN=m写成指数式am=N;
(3)将N写成以a为底的指数幂N=ab,则m=b,即logaN=b.
典例11:求下列各式中的x的值:
(1)log64x=-; (2)logx 8=6;
(3)lg 100=x; (4)-ln e2=x.
[解] (1)x=(64)=(43)=4-2=.
(2)x6=8,所以x=(x6)=8=(23)=2=.
(3)10x=100=102,于是x=2.
(4)由-ln e2=x,得-x=ln e2,即e-x=e2,
所以x=-2.
12.应用换底公式应注意的两个方面
(1)化成同底的对数时,要注意换底公式的正用、逆用以及变形应用.
(2)题目中有指数式和对数式时,要注意将指数式与对数式统一成一种形式.
典例12:已知3a=5b=c,且+=2,求c的值.
[思路点拨]
[解] ∵3a=5b=c,∴a=log3c,b=log5c,
∴=logc3,=logc5,
∴+=logc15.
由logc15=2得c2=15,即c=.
13.求对数型函数的定义域时应遵循的原则
(1)分母不能为0.
(2)根指数为偶数时,被开方数非负.
(3)对数的真数大于0,底数大于0且不为1.
提醒:定义域是使解析式有意义的自变量的取值集合,求与对数函数有关的定义域问题时,要注意对数函数的概念,若自变量在真数上,则必须保证真数大于0;若自变量在底数上,应保证底数大于0且不等于1.
典例13:求下列函数的定义域:
(1)f(x)=;
(2)f(x)=+ln(x+1);
(3)f(x)=log(2x-1)(-4x+8).
[解] (1)要使函数f(x)有意义,则logx+1>0,即logx>-1,解得0
14.函数图象的变换规律
(1)一般地,函数y=f(x±a)+b(a,b为实数)的图象是由函数y=f(x)的图象沿x轴向左或向右平移|a|个单位长度,再沿y轴向上或向下平移|b|个单位长度得到的.
(2)含有绝对值的函数的图象一般是经过对称变换得到的.一般地,y=f(|x-a|)的图象是关于直线x=a对称的轴对称图形;函数y=|f(x)|的图象与y=f(x)的图象在f(x)≥0的部分相同,在f(x)<0的部分关于x轴对称.
典例14:(1)当a>1时,在同一坐标系中,函数y=a-x与y=logax的图象为( )
A B C D
(2)已知f(x)=loga|x|,满足f(-5)=1,试画出函数f(x)的图象.
[思路点拨] (1)结合a>1时y=a-x=x及y=logax的图象求解.
(2)由f(-5)=1求得a,然后借助函数的奇偶性作图.
(1)C [∵a>1,∴0<<1,∴y=a-x是减函数,y=logax是增函数,故选C.]
(2)[解] ∵f(x)=loga|x|,∴f(-5)=loga5=1,即a=5,
∴f(x)=log5|x|,
∴f(x)是偶函数,其图象如图所示.
15.比较对数值大小的常用方法
(1)同底数的利用对数函数的单调性.
(2)同真数的利用对数函数的图象或用换底公式转化.
(3)底数和真数都不同,找中间量.
提醒:比较数的大小时先利用性质比较出与零或1的大小.
典例15:比较下列各组值的大小:
(1)log5与log5;
(2)log2与log2;
(3)log23与log54.
[解] (1)法一(单调性法):对数函数y=log5x在(0,+∞)上是增函数,而<,所以log5
所以log5
又因对数函数y=log2x在(0,+∞)上是增函数,
且>,所以0>log2>log2,
所以<,所以log2
因为log23>log22=1=log55>log54,
所以log23>log54.
16.常见的对数不等式的三种类型
(1)形如logax>logab的不等式,借助y=logax的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论;
(2)形如logax>b的不等式,应将b化为以a为底数的对数式的形式,再借助y=logax的单调性求解;
(3)形如logax>logbx的不等式,可利用图象求解.
典例16:已知函数f(x)=loga(x-1),g(x)=loga(6-2x)(a>0,且a≠1).
(1)求函数φ(x)=f(x)+g(x)的定义域;
(2)试确定不等式f(x)≤g(x)中x的取值范围.
[思路点拨] (1)直接由对数式的真数大于0联立不等式组求解x的取值集合.
(2)分a>1和0<a<1求解不等式得答案.
[解] (1)由解得1<x<3,∴函数φ(x)的定义域为{x|1<x<3}.
(2)不等式f(x)≤g(x),即为loga(x-1)≤loga(6-2x),
①当a>1时,不等式等价于
解得1
解得≤x<3.
综上可得,当a>1时,不等式的解集为;
当0<a<1时,不等式的解集为.
17.常见的函数模型及增长特点
(1)线性函数模型
线性函数模型y=kx+b(k>0)的增长特点是直线上升,其增长速度不变.
(2)指数函数模型
指数函数模型y=ax(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越快,即增长速度急剧,形象地称为“指数爆炸”.
(3)对数函数模型
对数函数模型y=logax(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓.
典例17:(1)下列函数中,增长速度最快的是( )
A.y=2 019x B.y=2019
C.y=log2 019x D.y=2 019x
(2)下面对函数f(x)=logx,g(x)=x与h(x)=-2x在区间(0,+∞)上的递减情况说法正确的是( )
A.f(x)递减速度越来越慢,g(x)递减速度越来越快,h(x)递减速度越来越慢
B.f(x)递减速度越来越快,g(x)递减速度越来越慢,h(x)递减速度越来越快
C.f(x)递减速度越来越慢,g(x)递减速度越来越慢,h(x)递减速度不变
D.f(x)递减速度越来越快,g(x)递减速度越来越快,h(x)递减速度越来越快
(1)A (2)C [(1)指数函数y=ax,在a>1时呈爆炸式增长,并且随a值的增大,增长速度越快,应选A.
(2)观察函数f(x)=logx,g(x)=x与h(x)=-2x在区间(0,+∞)上的图象(如图)可知:
函数f(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上,递减较慢,且越来越慢,同样,函数g(x)的图象在区间(0,+∞)上,递减较慢,且递减速度越来越慢;函数h(x)的图象递减速度不变.]
18.由图象判断指数函数、一次函数的方法
根据图象判断增长型的指数函数、一次函数时,通常是观察函数图象上升得快慢,即随着自变量的增大,图象最“陡”的函数是指数函数.
典例18:函数f(x)=2x和g(x)=2x的图象如图所示,设两函数的图象交于点A(x1,y1),B(x2,y2),且x1<x2.
(1)请指出图中曲线C1,C2分别对应的函数;
(2)结合函数图象,判断f与g,f(2 019)与g(2 019)的大小.
[解] (1)C1对应的函数为g(x)=2x,C2对应的函数为f(x)=2x.
(2)∵f(1)=g(1),f(2)=g(2)
从图象上可以看出,当1<x<2时,f(x)<g(x),
∴f<g;
当x>2时,f(x)>g(x),
∴f(2 019)>g(2 019).
19.函数零点的求法
(1)代数法:求方程f(x)=0的实数根.
(2)几何法:对于不能用求根公式的方程f(x)=0,可以将它与函数y=f(x)的图象联系起来.图象与x轴的交点的横坐标即为函数的零点.
典例19:(1)求函数f(x)=的零点;
(2)已知函数f(x)=ax-b(a≠0)的零点为3,求函数g(x)=bx2+ax的零点.
[解] (1)当x≤0时,令x2+2x-3=0,解得x=-3;
当x>0时,令-2+ln x=0,解得x=e2.
所以函数f(x)=的零点为-3和e2.
(2)由已知得f(3)=0即3a-b=0,即b=3a.
故g(x)=3ax2+ax=ax(3x+1).
令g(x)=0,即ax(3x+1)=0,
解得x=0或x=-.
所以函数g(x)的零点为0和-.
20.判断函数零点所在区间的三个步骤
(1)代入:将区间端点值代入函数求出函数的值.
(2)判断:把所得的函数值相乘,并进行符号判断.
(3)结论:若符号为正且函数在该区间内是单调函数,则在该区间内无零点,若符号为负且函数连续,则在该区间内至少有一个零点.
典例20:(1)函数f(x)=ln(x+1)-的零点所在的大致区间是( )
A.(3,4) B.(2,e)
C.(1,2) D.(0,1)
(2)根据表格内的数据,可以断定方程ex-x-3=0的一个根所在区间是( )
x
-1
0
1
2
3
ex
0.37
1
2.72
7.39
20.08
x+3
2
3
4
5
6
A.(-1,0) B.(0,1)
C.(1,2) D.(2,3)
(1)C (2)C [(1)因为f(1)=ln 2-<0,f(2)=ln 3-1>0,且函数f(x)在(0,+∞)上单调递增,
所以函数的零点所在区间为(1,2).故选C.
(2)构造函数f(x)=ex-x-3,由上表可得f(-1)=0.37-2=-1.63<0,
f(0)=1-3=-2<0,
f(1)=2.72-4=-1.28<0,
f(2)=7.39-5=2.39>0,
f(3)=20.08-6=14.08>0,
f(1)·f(2)<0,所以方程的一个根所在区间为(1,2),故选C.]
21.判断一个函数能否用二分法求其零点的依据是:其图象在零点附近是连续不断的,且该零点为变号零点.因此,用二分法求函数的零点近似值的方法仅对函数的变号零点适合,对函数的不变号零点不适合.
典例21:已知函数f(x)的图象如图所示,其中零点的个数与可以用二分法求解的个数分别为( )
A.4,4 B.3,4 C.5,4 D.4,3
D [图象与x轴有4个交点,所以零点的个数为4;左右函数值异号的零点有3个,所以用二分法求解的个数为3,故选D.]
22.函数拟合与预测的一般步骤:
(1)根据原始数据、表格,绘出散点图.
(2)通过考察散点图,画出拟合直线或拟合曲线.
(3)求出拟合直线或拟合曲线的函数关系式.
(4)利用函数关系式,根据条件对所给问题进行预测和控制,为决策和管理提供依据.
典例22:某企业常年生产一种出口产品,自2015年以来,每年在正常情况下,该产品产量平稳增长.已知2015年为第1年,前4年年产量f(x)(万件)如下表所示:
x
1
2
3
4
f(x)
4.00
5.58
7.00
8.44
(1)画出2015~2018年该企业年产量的散点图;
(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量变化的函数模型,并求出函数解析式;
(3)2019年(即x=5)因受到某国对我国该产品反倾销的影响,年产量减少30%,试根据所建立的函数模型,确定2019年的年产量为多少?
[思路点拨] →
[解] (1)画出散点图,如图所示.
(2)由散点图知,可选用一次函数模型.
设f(x)=ax+b(a≠0).由已知得解得
∴f(x)=1.5x+2.5.
检验:f(2)=5.5,且|5.58-5.5|=0.08<0.1,
f(4)=8.5,且|8.44-8.5|=0.06<0.1.
∴一次函数模型f(x)=1.5x+2.5能基本反映年产量的变化.
(3)根据所建的函数模型,预计2019年的年产量为f(5)=1.5×5+2.5=10万件,又年产量减少30%,即10×70%=7万件,即2019年的年产量为7万件.
相关试卷
这是一份专题16 计数原理(公式、定理、结论图表)-备战2024年新高考数学必背知识手册,共11页。试卷主要包含了计数原理,排列,组合,二项式定理,杨辉三角形等内容,欢迎下载使用。
这是一份专题15 导数及其应用(公式、定理、结论图表)-备战2024年新高考数学必背知识手册,共8页。试卷主要包含了曲线在点处切线,曲线过点处切线,利用导数求最值,.解决优化问题的步骤,))等内容,欢迎下载使用。
这是一份专题14 数列(公式、定理、结论图表)-备战2024年新高考数学必背知识手册,共13页。试卷主要包含了定义, 前n项和公式法等内容,欢迎下载使用。