2020年河南省中考数学试卷与答案
展开2020年河南省中考数学试卷
一、 选择题(每小题3分 ,共30分)
1. 2的相反数是( )
A. B. C. D.
2.如下摆放的几何体中,主视图与左视图有可能不同的是( )
A. B. C. D.
3.要调查下列问题,适合采用全面调查(普查)的是( )
A. 中央电视台《开学第--课》 收视率
B. 某城市居民6月份人均网上购物的次数
C. 即将发射的气象卫星的零部件质量
D. 某品牌新能源汽车的最大续航里程
4.如图,,若,则的度数为( )
A. B.
C. D.
5.电子文件的大小常用等作为单位,其中,某视频文件的大小约为等于( )
A. B. C. D.
6.若点在反比例函数的图像上,则的大小关系为( )
A. B. C. D.
7.定义运算:.例如.则方程的根的情况为( )
A. 有两个不相等的实数根 B. 有两个相等的实数根
C. 无实数根 D. 只有一个实数根
8.国家统计局统计数据 显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由0亿元增加到亿元.设我国2017年至2019年快递业务收入年平均增长率为.则可列方程为( )
A.
B.
C.
D.
9.如图,在中,.边在轴上,顶点的坐标分别为和.将正方形沿轴向右平移当点落在边上时,点的坐标为( )
A. B. C. D.
10.如图,在中, ,分别以点为圆心,长为半径作弧,两弧交于点,连接则四边形的面积为( )
A. B. C. D.
二、填空题:(每题3分,共15分)
11.请写出一个大于1且小于2的无理数: .
12.已知关于的不等式组,其中在数轴上的对应点如图所示,则这个不等式组的解集为__________.
13.如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是__________.
14.如图,在边长为的正方形中,点分别是边的中点,连接点分别是的中点,连接,则的长度为__________.
15.如图,在扇形中,平分交狐于点.点为半径上一动点若,则阴影部分周长的最小值为__________.
三、解答题(本大题共8个小题,满分75分)
16.先化简,再求值:,其中
17.为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋,与之相差大于为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:
[收集数据]从甲、乙两台机器分装的成品中各随机抽取袋,测得实际质量(单位:)
如下:
甲:
乙:
[整理数据]整理以上数据,得到每袋质量的频数分布表.
[分析数据]根据以上数据,得到以下统计量.
根据以上信息,回答下列问题:
表格中的
综合上表中的统计量,判断工厂应选购哪一台分装机,并说明理由.
18.位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.
某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水 平步道上架设测角仪,先在点处测得观星台最高点的仰角为,然后沿方向前进到达点处,测得点的仰角为.测角仪的高度为,
求观星台最高点距离地面的高度(结果精确到.参考数据: );
“景点简介”显示,观星台的高度为,请计算本次测量结果的误差,并提出一条减小误差的合理化建议.
19.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.
方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;
方案二:不购买学生暑期专享卡,每次健身费用按八折优惠;
设某学生暑期健身(次),按照方案一所需费用为,(元),且;按照方案二所需费用为(元) ,且其函数图象如图所示.
求和值,并说明它们的实际意义;
求打折前的每次健身费用和的值;
八年级学生小华计划暑期前往该俱乐部健身次,应选择哪种方案所需费用更少?说明理由.
20.我们学习过利用用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的人们根据实际需爱,发明了一种简易操作工具--------三分角器.图1是它的示意图,其中与半圆的直径在同一直线 上,且的长度与半圆的半径相等;与重直点 足够长.
使用方法如图2所示,若要把三等分,只需适当放置三分角器,使经过的顶点,点落在边上,半圆与另一边恰好相切,切点为,则就把三等分了.
为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.
已知:如图2,点在同一直线上,垂足为点,
求证:
21.如图,抛物线与轴正半轴,轴正半轴分别交于点,且点为抛物线的顶点.
求抛物线解析式及点G的坐标;
点为抛物线上两点(点在点的左侧) ,且到对称轴的距离分别为个单位长度和个单位长度,点为抛物线上点之间(含点)的一个动点,求点的纵坐标的取值范围.
22.小亮在学习中遇到这样一个问题:
如图,点是弧上一动点,线段点是线段的中点,过点作,交的延长线于点.当为等腰三角形时,求线段的长度.
小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:
根据点在弧上的不同位置,画出相应的图形,测量线段的长度,得到下表的几组对应值.
操作中发现:
①"当点为弧的中点时, ".则上中的值是
②"线段的长度无需测量即可得到".请简要说明理由;
将线段的长度作为自变量和的长度都是的函数,分别记为和,并在平面直角坐标系中画出了函数的图象,如图所示.请在同一坐标系中画出函数的图象;
继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当为等腰三角形时,线段长度的近似值.(结果保留一位小数).
23.将正方形的边绕点逆时针旋转至 ,记旋转角为.连接,过点作垂直于直线,垂足为点,连接,
如图1,当时,的形状为 ,连接,可求出的值为 ;
当且时,
①中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;
②当以点为顶点的四边形是平行四边形时,请直接写出的值.
2020年河南省中考数学试卷答案
1. D.2.D.3.C.4.B.5.A.6.C.7.8.D.9. 10.D.
11.(答案不唯一).12.x>a.13..14.1.15.
16.原式==,
当时,原式=.
17.(1)把乙组数据从下到大排序为:
,可得中位数=;
根据已知条件可得出产品合格的范围是,甲生产的产品有3袋不合格,故不合格率为.
故a=501,.
(2)选择乙分装机;根据方差的意义可知:方差越小,数据越稳定,由于,所以乙分装机.
18.解:(1)如图,过点A作AE⊥MN交MN的延长线于点E,交BC的延长线于点D,
设AD的长为xm,
∵AE⊥ME,BC∥MN,
∴AD⊥BD,∠ADC=90°,
∵∠ACD=45°,
∴CD=AD=xm,BD=BC+CD=(16+x)m,
由题易得,四边形BMNC为矩形,
∵AE⊥ME,
∴四边形CNED为矩形,
∴DE=CN=BM=,
在Rt△ABD中,,
解得:,
即AD=10.7m,AE=AD+DE=10.7+1.6=12.3m,
答:观星台最高点距离地面的高度为12.3m.
(2)本次测量结果的误差为:12.6-12.3=0.3m,
减小误差的合理化建议:多次测量,求平均值.
19.解:(1)由图象可得:经过(0,30)和(10,180)两点,代入函数关系式可得:,
解得:,
即k1=15,b=30,
k1=15表示的是每次健身费用按六折优惠是15元,b=30表示购买一张学生暑期专享卡的费用是30元;
(2)设打折前的每次健身费用为a元,
由题意得:0.6a=15,
解得:a=25,
即打折前的每次健身费用为25元,
k2表示每次健身按八折优惠的费用,故k2=25×0.8=20;
(3)由(1)(2)得:,,
当小华健身次即x=8时,
,,
∵150<160,
∴方案一所需费用更少,
答:方案一所需费用更少.
20.已知:如图2,点在同一直线上,垂足为点, 在上,过点,为半圆的切线,切点为.
求证: EB,EO为∠MEN的三等分线.
.
证明:如图,连接OF.则∠OFE=90°,
∵EB⊥AC,EB与半圆相切于点B,
∴∠ABE=∠OBE=90°,
∵BA=BO.EB=EB,
∴∠AEB=∠BEO,
∵EO=EO.OB=OF,∠OBE=∠OFE,
∴,
∴∠OEB=∠OEF,
∴∠AEB=∠BEO=∠OEF,
∴EB,EO为∠MEN的三等分线.
故答案为:在上,过点,为半圆的切线,切点为.
EB,EO为∠MEN的三等分线.
21.解:(1)∵抛物线与轴正半轴分别交于点B,
∴B点坐标为(c,0),
∵抛物线经过点A,
∴﹣c2+2c+c=0,
解得c1=0(舍去),c2=3,
∴抛物线的解析式为
∵=﹣(x-1)2+4,
∴抛物线顶点G坐标为(1,4).
(2)抛物线的对称轴为直线x=1,
∵点M,N到对称轴的距离分别为3个单位长度和5个单位长度 ,
∴点M的横坐标为﹣2或4,点N的横坐标为﹣4或6,
点M的纵坐标为﹣5,点N的纵坐标为﹣21,
又∵点M在点N的左侧,
∴当M坐标为(﹣2,﹣5)时,点N的坐标为(6,﹣21),
则﹣21≤≤4
当当M坐标为(4,﹣5)时,点N的坐标为(6,﹣21),
则﹣21≤≤﹣5,
∴的取值范围为﹣21≤≤4.
22.解:(1)①点为弧的中点时,由圆的性质可得:
,
∴△ABD≌△ACD,
∴CD=BD=5.0,
∴;
②∵,
∴,
∵,
∴△ACF≌△ABD,
∴CF=BD,
∴线段的长度无需测量即可得到;
(2)函数的图象如图所示:
(3)由(1)知,
画出的图象,如上图所示,当为等腰三角形时,
①,BD为与函数图象的交点横坐标,即BD=5.0cm;
②,BD为与函数图象的交点横坐标,即BD=6.3cm;
③,BD为与函数图象的交点横坐标,即BD=3.5cm;
综上:当为等腰三角形时,线段长度的近似值为3.5cm或5.0cm或6.3cm.
23.(1)由题知°,°,
∴°,且为等边三角形
∴°,
∴
∵
∴°
∴°
∴等腰直角三角形
连接BD,如图所示
∵°
∴即
∵
∴
∴
故答案为:等腰直角三角形,
(2)①两个结论仍然成立
连接BD,如图所示:
∵,
∴
∵
∴
∴
∵
∴
∴是等腰直角三角形
∴
∵四边形正方形
∴
∴
∵
∴
∴
∴
∴结论不变,依然成立
②若以点为顶点的四边形是平行四边形时,分两种情况讨论
第一种:以CD为边时,则,此时点在线段BA的延长线上,
如图所示:
此时点E与点A重合,
∴,得;
②当以CD为对角线时,如图所示:
此时点F为CD中点,
∵
∴
∵
∴
∴
∴
∴
∴
综上:的值为3或1.
2016年河南省中考数学试卷及答案: 这是一份2016年河南省中考数学试卷及答案,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2014年河南省中考数学试卷及答案: 这是一份2014年河南省中考数学试卷及答案,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2012年河南省中考数学试卷及答案: 这是一份2012年河南省中考数学试卷及答案,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。