





所属成套资源:备战2024年新高考五省新高考数学复习之大题精编
- 备战2024年新高考五省新高考数学复习之大题精编 专题1 三角函数与解三角形 解答题30题专项提分计划(安徽、吉林、黑龙江、云南、山西备战2024年新高考五省通用) 试卷 1 次下载
- 备战2024年新高考五省新高考数学复习之大题精编 专题2 数列 解答题30题专项提分计划(安徽、吉林、黑龙江、云南、山西备战2024年新高考五省通用) 试卷 1 次下载
- 备战2024年新高考五省新高考数学复习之大题精编 专题3 立体几何 解答题30题专项提分计划(安徽、吉林、黑龙江、云南、山西备战2024年新高考五省通用) 试卷 1 次下载
- 备战2024年新高考五省新高考数学复习之大题精编 专题5 圆锥曲线 解答题30题专项提分计划(安徽、吉林、黑龙江、云南、山西备战2024年新高考五省通用) 试卷 1 次下载
- 备战2024年新高考五省新高考数学复习之大题精编 专题6 导数 解答题30题专项提分计划(安徽、吉林、黑龙江、云南、山西备战2024年新高考五省通用) 试卷 1 次下载
备战2024年新高考五省新高考数学复习之大题精编
展开
这是一份备战2024年新高考五省新高考数学复习之大题精编,文件包含五省新高考数学复习专题4统计与概率解答题30题专项提分计划安徽吉林黑龙江云南山西五省通用解析版docx、五省新高考数学复习专题4统计与概率解答题30题专项提分计划安徽吉林黑龙江云南山西五省通用原卷版docx等2份试卷配套教学资源,其中试卷共80页, 欢迎下载使用。
【大题精编】备战2024五省新高考数学复习
专题4 统计与概率 解答题30题专项提分计划
(安徽、吉林、黑龙江、云南、山西五省通用)
1.(2022秋·安徽·高三校联考阶段练习)某校为了庆祝二十大的胜利召开,决定举办“学党史·铭初心”党史知识竞赛.高三年级为此举办了一场选拔赛,选拔赛分为初赛和决赛,初赛通过后才能参加决赛,决赛通过后将代表年级参加学校比赛.已知甲、乙、丙3位同学通过初赛的概率均为,通过初赛后再通过决赛的概率依次为,假设他们之间通过与否互不影响.
(1)求这3人中至少有1人通过初赛的概率;
(2)从甲、乙、丙3位同学中随机抽取一名,求他通过决赛的概率;
(3)设这3人中通过决赛的人数为,求的分布列及期望.
2.(2023春·安徽·高三合肥市第六中学校联考开学考试)2022年北京冬奥会圆满落幕,随后多所学校掀起了“雪上运动”的热潮.为了解学生对“雪上运动”的喜爱程度,某学校从全校学生中随机抽取200名学生进行问卷调查,得到以下数据:
喜欢雪上运动
不喜欢雪上运动
合计
男生
80
40
女生
30
50
合计
(1)完成列联表,依据小概率值的独立性检验,能否认为是否喜欢雪上运动与性别有关联?
(2)①从随机抽取的这200名学生中采用分层抽样的方法抽取20人,再从这20人中随机抽取3人.记事件“至少有2名是男生”,事件“至少有2名喜欢雪上运动的男生”,事件“至多有1名喜欢雪上运动的女生”.试计算和的值,并比较它们的大小.
②①中与的大小关系能否推广到更一般的情形?请写出结论,并说明理由.
参考公式及数据,.
0.10
0.05
0.010
0.001
2.706
3.841
6.635
10.828
3.(2022秋·山西长治·高三山西省长治市第二中学校校考阶段练习)“斯诺克(Snooker)”是台球比赛的一种,意思是“阻碍、障碍”,随着生活水平的提高,“斯诺克”也成为人们喜欢的运动之一.现甲、乙两人进行比赛采用5局3胜制,各局比赛双方轮流开球(例如:若第一局甲开球,则第二局乙开球,第三局甲开球……),没有平局,已知在甲的“开球局”,甲获得该局比赛胜利的概率为,在乙的“开球局”,甲获得该局比赛胜利的概率为,并且通过“猜硬币”,甲获得了第一局比赛的开球权.
(1)求甲以3∶1赢得比赛的概率;
(2)设比赛的总局数为,写出随机变量的分布列并求其数学期望.
4.(2022秋·吉林·高三校联考阶段练习)某学校在50年校庆到来之际,举行了一次趣味运动项目比赛,比赛由传统运动项目和新增运动项目组成,每位参赛运动员共需要完成3个运动项目.对于每一个传统运动项目,若没有完成,得0分,若完成了,得30分.对于新增运动项目,若没有完成,得0分,若只完成了1个,得40分,若完成了2个,得90分.最后得分越多者,获得的资金越多.现有两种参赛的方案供运动员选择.方案一:只参加3个传统运动项目.方案二:先参加1个传统运动项目,再参加2个新增运动项目.已知甲、乙两位运动员能完成每个传统项目的概率为,能完成每个新增运动项目的概率均为,且甲、乙参加的每个运动项目是否能完成相互独立.
(1)若运动员甲选择方案一,求甲得分不低于60分的概率.
(2)若以最后得分的数学期望为依据,请问运动员乙应该选择方案一还是方案二?说明你的理由.
5.(2023春·山西忻州·高三校联考开学考试)甲、乙两班进行消防安全知识竞赛,每班选出3人组成甲、乙两支代表队,每队初始分均为4分,首轮比赛每人回答一道必答题,答对则为本队得2分,答错或不答扣1分.已知甲队3人每人答对的概率分别为,,,乙队每人答对的概率都是.设每人回答正确与否相互之间没有影响,用表示首轮甲队总分.
(1)求随机变量的分布列及其数学期望;
(2)求在甲队和乙队总分之和为14的条件下,甲队与乙队得分相同的概率.
6.(2023春·安徽·高三校联考开学考试)某大型国有企业计划在某双一流大学进行招聘面试,面试共分两轮,且第一轮通过后才能进入第二轮面试,两轮均通过方可录用.甲、乙、丙、丁4名同学参加面试,已知这4人面试第一轮通过的概率分别为,,,,面试第二轮通过的概率分别为,,,,且4人的面试结果相互独立.
(1)求甲、乙、丙、丁4人中至少有1人被录用的概率;
(2)记甲、乙、丙、丁4人中最终被录用的人数为X,求X的分布列和数学期望.
7.(2023·安徽淮北·统考一模)为弘扬中华优秀传统文化,荣造良好的文化氛围,某高中校团委组织非毕业年级开展了“我们的元宵节”主题知识竞答活动,该活动有个人赛和团体赛,每人只能参加其中的一项,根据各位学生答题情况,获奖学生人数统计如下:
奖项组别
个人赛
团体赛获奖
一等奖
二等奖
三等奖
高一
20
20
60
50
高二
16
29
105
50
(1)从获奖学生中随机抽取1人,若已知抽到的学生获得一等奖,求抽到的学生来自高一的概率;
(2)从高一和高二获奖者中各随机抽取1人,以表示这2人中团体赛获奖的人数,求的分布列和数学期望;
(3)从获奖学生中随机抽取3人,设这3人中来自高一的人数为,来自高二的人数为,试判断与的大小关系.(结论不要求证明)
8.(云南省德宏州2023届高三上学期期末教学质量统一监测数学试题)2021年9月3日,中华人民共和国教育部召开第五场金秋新闻发布会,会上发布了第八次全国学生体质与健康调研结果.调研结果数据显示,我国大中小学的学生健康情况有了明显改善,学生总体身高水平也有所增加;但同时在超重和肥胖率上,中小学生却有一定程度上升,大学生整体身体素质也有所下滑.某市为调研本市学生体质情况,采用按性别分层抽样的方法进行调查,得到体质测试样本的统计数据(单位:人)如下表:
优秀
良好
及格
不及格
男生
50
100
390
60
女生
60
100
260
60
(1)根据以上统计数据,完成下面列联表:
达标
不达标
合计
男生
女生
合计
并据此判断:依据小概率值的独立性检验,能否认为该市学生体质测试是否达标与性别有关?(注:体质测试成绩为优秀、良好或及格则体质达标,否则不达标)
(2)体质测试成绩为优秀或良好则称体质测试成绩为优良,以样本数据中男、女生体质测试成绩优良的频率视为该市男、女生体质测试成绩优良的概率.在该市学生中随机选取2名男生,2名女生,设所选4人中体质测试成绩优良人数为,求的分布列及数学期望.
附:①;
②
a
0.050
0.010
0.001
xa
3.841
6.635
10.828
9.(云南省大理、丽江2023届高三毕业生第二次复习统一检测数学试题)党的二十大胜利召开后,某校为调查性别因素对党史知识的了解情况是否有影响,随机抽查了男女教职工各100名,得到如下数据:
不了解
了解
女职工
30
70
男职工
20
80
(1)根据小概率值的独立性检验,能否认为对党史知识的了解情况与性别有关?
(2)为了增进全体教职工对党史知识的了解,该校组织开展党史知识竞赛活动并以支部为单位参加比赛现有两组党史题目放在甲、乙两个纸箱中,甲箱有5个选择题和3个填空题,乙箱中有4个选择题和3个填空题,比赛中要求每个支部在甲或乙两个纸箱中随机抽取两题作答.每个支部先抽取一题作答,答完后题目不放回纸箱中,再抽取第二题作答,两题答题结束后,再将这两个题目放回原纸箱中,若第一支部从甲箱中抽取了2个题目,答题结束后错将题目放入了乙箱中,接着第二支部答题,第二支部抽取第一题时,从乙箱中抽取了题目.已知第二支部从乙箱中取出的这个题目是选择题,求第一支部从甲箱中取出的是2个选择题的概率.
附:
0.010
0.005
0.001
6.635
7.879
10.828
10.(云南省曲靖市2023届高三第一次教学质量监测数学试题)某地A,B,C,D四个商场均销售同一型号的冰箱,经统计,2022年10月份这四个商场购进和销售该型号冰箱的台数如下表(单位:十台):
A商场
B商场
C商场
D商场
购讲该型冰箱数x
3
4
5
6
销售该型冰箱数y
2.5
3
4
4.5
(1)已知可用线性回归模型拟合y与x的关系,求y关于x的线性回归方程;
(2)假设每台冰箱的售价均定为4000元.若进入A商场的甲、乙两位顾客购买这种冰箱的概率分别为p,,且甲乙是否购买冰箱互不影响,若两人购买冰箱总金额的期望不超过6000元,求p的取值范围.
参考公式:回归方程中斜率和截距的最小二乘估计公式分别为,.
11.(云南师范大学附属中学2023届高三上学期高考适应性月考卷(六)数学试题)2022年,为贯彻落实党的十九届六中全会、中央经济工作会议、中央农村工作会议、中央1号文件精神,围绕巩固拓展脱贫攻坚成果、全面推进乡村振兴、加快农业农村现代化,国家继续加大支农投入,强化项目统筹整合.某企业为合理规划价格,积极响应号召,将某农产品按事先拟定的价格进行试销,得到一组销售数据(,2,3,4,5),如下表所示:
试销单价(元)
3
4
5
6
7
产品销量(件)
20
16
15
12
6
(1)若变量x,y具有线性相关关系,求产品销量(件)关于试销单价(元)的线性回归方程;
(2)用表示用(1)中所求的线性回归方程得到的与对应的产品销量的估计值,当销售数据对应的残差的绝对值时,则将销售数据称为一个“次数据”.现从5个销售数据中任取3个,求“次数捃”个数的分布列和数学期望.
(参考公式:线性回归方程中,的最小二乘估计分别为,)
12.(云南民族大学附属中学2023届高三上学期期中诊断数学试题)2022年10月1日,某地发现两名核酸阳性人员,10月2日零时划分A片区为中风险,其他地区常态化防护,10月3日某校高三学生返校备战高考,5日高一高二除该地学籍学生外,其他学生均返校;当地教育局高度重视学校疫情防控,为此展开了全校核酸检测,核酸检测方式既可以采用单样本检测,又可以采用“K合1检测法”.“K合1检测法”是将K个样本混合在一起检测,若混合样本呈阳性,则该组中各个样本再全部进行单样本检测;若混合样本呈阴性,则可认为该混合样本中每个样本都是阴性.通过病毒指标检测,每位密切接触者为阴性的概率为,且每位密切接触者病毒指标是否为阴性相互独立.
(1)现对10个样本进行单样本检测,求检测结果最多有1个样本为阳性的概率的表达式;
(2)现把20个样本随机分成A,B两组,采用“10合1检测法”进行核酸检测.用含p的式子表示以下问题的结果:
①求A组混合样本呈阳性的概率;
②设总检测次数为X,求X的分布列和数学期望.
13.(2023届西南3 3 3高考备考诊断性联考(一)数学试题)2022年10月1日,女篮世界杯落幕,时隔28年,中国队再次获得亚军,追平历史最佳成绩.为考察某队员甲对球队的贡献,教练对近两年甲参加过的100场比赛进行统计:甲在前锋位置出场20次,其中球队获胜14次;中锋位置出场30次,其中球队获胜21次;后卫位置出场50次,其中球队获胜40次.用该样本的频率估计概率,则:
(1)甲参加比赛时,求该球队某场比赛获胜的概率;
(2)现有小组赛制如下:小组共6支球队,进行单循环比赛,即任意两支队伍均有比赛,规定至少3场获胜才可晋级.教练决定每场比赛均派甲上场,已知甲所在球队顺利晋级,记其获胜的场数为X,求X的分布列和数学期望.
14.(2023届安徽省、云南省、吉林省、黑龙江省高三下学期2月适应性测试数学试题)一个池塘里的鱼的数目记为N,从池塘里捞出200尾鱼,并给鱼作上标识,然后把鱼放回池塘里,过一小段时间后再从池塘里捞出500尾鱼,表示捞出的500尾鱼中有标识的鱼的数目.
(1)若,求的数学期望;
(2)已知捞出的500尾鱼中15尾有标识,试给出N的估计值(以使得最大的N的值作为N的估计值).
15.(吉林省实验繁荣高级中学2022-2023学年高三上学期期末数学试题)每年的寒冷天气都会带热“御寒经济”,以交通为例,当天气天冷时,不少人都会选择利用手机上的打车软件在网上预约出租车出行,出租车公司的订单数就会增加.下表是某出租车公司从出租车的订单数据中抽取的5天的日平均气温(单位:)与网上预约出租车订单数(单位:份);
日平均气温
4
2
网上预约订单数
135
150
200
215
250
(1)经数据分析,一天内平均气温与该出租车公司网约订单数(份)成线性相关关系,试建立关于的回归方程(系数保留两位小数),并预测日平均气温为时,该出租车公司的网约订单数(结果保留整数);
(2)天气预报未来5天有2天日平均气温不高于,若把这5天的预测数据当成真实的数据,根据表格数据,则从这5天中任意选取2天,求至少有1天出租车网约订单数不低于250份的概率.
附:线性回归方程:
16.(吉林省东北师范大学附属中学净月实验学校2022-2023学年高三上学期第二次校内摸底考试数学试题)新冠肺炎是近百年来人类遭遇的影响范围最广的全球性大流行病毒.对前所未知、突如其来、来势汹汹的疫情,习近平总书记亲自指挥、亲自部署,强调把人民生命安全和身体健康放在第一位.明确坚决打赢疫情防控的人民战争、总体战、阻击战.当前,新冠肺炎疫情防控形势依然复杂严峻.为普及传染病防治知识,增强学生的疾病防范意识,提高自身保护能力,市团委在全市学生范围内,组织了一次传染病及个人卫生相关知识有奖竞赛(满分分),竞赛奖励规则如下:得分在内的学生获三等奖,得分在内的学生获二等奖,得分在内的学生获一等奖,其它学生不得奖.为了解学生对相关知识的掌握情况,随机抽取了名学生的竞赛成绩,获得了如下频数分布表.
竞赛成绩
人数
(1)从该样本中随机抽取名学生,求这名学生均获一等奖的概率;
(2)若该市所有参赛学生的成绩近似地服从正态分布,若从所有参赛学生中(参赛学生人数特别多)随机抽取名学生进行座谈,设其中竞赛成绩在分以上的学生人数为,求随机变量的分布列和数学期望.
17.(吉林省长春市第六中学2022-2023学年高三上学期期末数学试题)2022年11月20日,卡塔尔足球世界杯正式开幕,世界杯上的中国元素随处可见.从体育场建设到电力保障,从赛场内的裁判到赛场外的吉祥物……中国制造为卡塔尔世界杯提供了强有力的支持.国内也再次掀起足球热潮.某地足球协会组建球队参加业余比赛.该足球队教练组对球员的使用是依据数据分析,为了考查球员甲对球队的贡献,作出如下数据统计(甲参加过的比赛均分出了胜负):
球队负
球队胜
总计
甲参加
3
29
32
甲未参加
7
11
18
总计
10
40
50
(1)据此能否有97.5%的把握认为球队胜利与甲球员参赛有关;
(2)根据以往的数据统计,乙球员能够胜任边锋、中锋、后腰以及后卫四个位置,且出场率分别为:0.2,0.4,0.3,0.1,当出任边锋、中锋、后腰以乃后卫时,球队输球的概率依次为:0.4、0.3、0.4、0.2.则:
①当乙球员参加比赛时,求球队某场比赛输球的概率;
②当乙球员参加比赛时,在球队输了某场比赛的条件下,求乙球员担任边锋的概率;
③如果你是教练员,应用概率统计有关知识,该如何使用乙球员?
附表及公式:
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
.
18.(吉林省东北师范大学附属中学2022-2023学年高三上学期第一次摸底考试数学试题)某兴趣小组为了解某城市不同年龄段的市民每周的阅读时长情况,在市民中随机抽取了人进行调查,并按市民的年龄是否低于岁及周平均阅读时间是否少于小时将调查结果整理成列联表,现统计得出样本中周平均阅读时间少于小时的人数占样本总数的.岁以上(含岁)的样本占样本总数的,岁以下且周平均阅读时间少于小时的样本有人.
周平均阅读时间少于小时
周平均阅读时间不少于小时
合计
岁以下
岁以上(含岁)
合计
(1)请根据已知条件将上述列联表补充完整,并依据小概率值的独立性检验,分析周平均阅读时间长短与年龄是否有关联.如果有关联,解释它们之间如何相互影响.
(2)现从岁以上(含岁)的样本中按周平均阅读时间是否少于小时用分层抽样法抽取人做进一步访谈,然后从这人中随机抽取人填写调查问卷,记抽取的人中周平均阅读时间不少于小时的人数为,求的分布列及数学期望.
参考公式及数据:,.
19.(黑龙江省哈尔滨市第九中学校2022-2023学年高三下学期开学测试数学试卷)我市为了解学生体育运动的时间长度是否与性别因素有关,从某几所学校中随机调查了男、女生各100名的平均每天体育运动时间,得到如下数据:
分钟
性别
女生
10
40
40
10
男生
5
25
40
30
根据学生课余体育运动要求,平均每天体育运动时间在内认定为“合格”,否则被认定为“不合格”,其中,平均每天体育运动时间在内认定为“良好”.
(1)完成下列列联表,并依据小概率值的独立性检验,分析学生体育运动时间与性别因素有无关联;
不合格
合格
合计
女生
男生
合计
(2)从女生平均每天体育运动时间在,,,的100人中用分层抽样的方法抽取20人,再从这20人中随机抽取2人,记X为2人中平均每天体育运动时间为“良好”的人数,求X的分布列及数学期望;
(3)从全市学生中随机抽取100人,其中平均每天体育运动时间为“良好”的人数设为,记“平均每天体育运动时间为‘良好’的人数为k”的概率为,视频率为概率,用样本估计总体,求的表达式.
附:,其中.
0.010
0.005
0.001
6.635
7.879
10.828
20.(思想01运用分类讨论的思想方法解题(精讲精练)-1)甲、乙、丙、丁进行乒乓球比赛,比赛规则如下:
第一轮:甲和乙进行比赛,同时丙和丁进行比赛,两个获胜者进入胜者组,两个败者进入败者组;
第二轮:胜者组进行比赛,同时败者组进行比赛,败者组中失败的选手淘汰;
第三轮:败者组的胜者与胜者组的败者进行比赛,失败的选手淘汰;
第四轮:第三轮中的胜者与第二轮中胜者组的胜者进行决赛,胜者为冠军.
已知甲与乙、丙、丁比赛,甲的胜率分别为;乙与丙、丁比赛,乙的胜率分别为;丙与丁比赛,丙的胜率为任意两场比赛之间均相互独立.
(1)求丙在第二轮被淘汰的概率;
(2)在丙在第二轮被淘汰的条件下,求甲所有比赛全胜并获得冠军的概率.
21.(黑龙江省大庆市大庆铁人中学2022-2023学年高三上学期期末数学试题)为了调查高中生的数学成绩与学生每周自主学习时间之间的关联,某中学数学教师对新入学的180名学生进行了跟踪调查,其中每周自主学习的时间不少于12小时的有76人,某次考试后,统计成绩,得到如下的2×2列联表:
(单位:人)
每周自主学习时间
数学成绩
合计
不低于120分
低于120分
不少于12小时
60
76
不足12小时
64
合计
180
(1)请完成上面的2×2列联表,根据小概率值的独立性检验,能否认为高中生的数学成绩与每周自主学习时间有关联?
(2)(ⅰ)若将频率视为概率,从全校本次考试中数学成绩不低于120分的学生中随机抽取12人,求这些人中每周自主学习时间不少于12小时的人数的数学期望.
(ⅱ)从全校本次考试中数学成绩不低于120分的学生中随机抽取12人,通过调查问卷发现,这12人每周自主学习时间的情况可分为三类:A类,每周自主学习时间不少于16小时,有4人;B类,每周自主学习时间不少于12小时但不足16小时,有5人;C类,每周自主学习时间不足12小时,有3人.若从这12人中再随机抽取3人进一步了解情况,记X为抽取的3人中A类人数和C类人数差的绝对值,求X的数学期望.
附:,.
0.100
0.050
0.010
0.005
0.001
2.706
3.841
6.635
7.879
10.828
22.(黑龙江省大庆市东风中学2022-2023学年高三上学期第一次月考数学试题)某地有A、B、C、D四人先后感染了新型冠状病毒,其中只有A到过疫区.
(1)如果B、C、D受到A感染的概率均为,那么B、C、D三人中恰好有一人受到A感染新型冠状病毒的概率是多少?
(2)若B肯定受A感染,对于C,因为难以判断他是受A还是受B感染的,于是假定他受A和受B感染的概率都是,同样也假设D受A、B和C感染的概率都是,在这种假定之下,B、C、D中直接受A感染的人数X为一个随机变量,求随机变量X的均值和方差.
23.(山西省阳泉市2023届高三上学期期末数学试题)某市为了传承发展中华优秀传统文化,组织该市中学生进行了一次文化知识有奖竞赛,竞赛奖励规则如下:得分在内的学生获三等奖,得分在内的学生获二等奖,得分在内的学生获得一等奖,其他学生不得奖,为了解学生对相关知识的掌握情况,随机抽取100名学生的竞赛成绩,并以此为样本绘制了样本频率分布直方图,如图所示.
(1)现从该样本中随机抽取两名学生的竞赛成绩,求这两名学生中恰有一名学生获奖的概率;
(2)若该市所有参赛学生的成绩X近似服从正态分布,其中,为样本平均数的估计值,利用所得正态分布模型解决以下问题:
(i)若该市共有10000名学生参加了竞赛,试估计参赛学生中成绩超过79分的学生数(结果四舍五入到整数);
(ii)若从所有参赛学生中(参赛学生数大于10000)随机取3名学生进行访谈,设其中竞赛成绩在64分以上的学生数为,求随机变量的分布列和期望.
附参考数据,若随机变量X服从正态分布,则,,.
24.(山西省吕梁市2023届高三上学期期末数学试题)为了迎接2022年世界杯足球赛,某足球俱乐部在对球员的使用上一般都进行一些数据分析,在上一年的赛季中,A球员对球队的贡献度数据统计如下:
球队胜
球队负
总计
上场
22
未上场
12
20
总计
50
(1)求的值,据此能否有的把握认为球队胜利与球员有关;
(2)根据以往的数据统计,球员能够胜任前锋、中锋、后卫以及守门员四个位置,且出场率分别为:,当出任前锋、中锋、后卫以及守门员时,球队赢球的概率依次为:,则:
①当他参加比赛时,求球队某场比赛赢球的概率;
②当他参加比赛时,在球队赢了某场比赛的条件下,求球员担当守门员的概率;
③在2022年的4场联赛中,用X表示“球队赢了比赛的条件下球员担当守门员”的比赛场次数,求的分布列及期望.
附表及公式:
.
25.(山东省广饶县第一中学三校区2022-2023学年高三上学期12月月考数学试题)现有甲、乙两名运动员争夺某项比赛的奖金,规定两名运动员谁先赢局,谁便赢得全部奖金a元.假设每局甲赢的概率为,乙赢的概率为,且每场比赛相互独立.在甲赢了局,乙赢了局时,比赛意外终止,奖金如何分配才合理?评委给出的方案是:甲、乙按照比赛再继续进行下去各自赢得全部奖金的概率之比分配奖金.
(1)若,求;
(2)记事件A为“比赛继续进行下去乙赢得全部奖金”,试求当时,比赛继续进行下去甲赢得全部奖金的概率,并判断当时,事件A是否为小概率事件,并说明理由.规定:若随机事件发生的概率小于0.06,则称该随机事件为小概率事件.
26.(山西省忻州市2023届高三下学期百日冲刺数学试题)某校为了解高三年级学生的学习情况,进行了一次高考模拟测试,从参加测试的高三学生中随机抽取200名学生的成绩进行分析,得到如下列联表:
本科分数线以下
本科分数线以上(包含本科分数线)
合计
男
40
80
120
女
32
48
80
合计
72
128
200
将频率视为概率.
(1)从该校高三男、女学生中各随机抽取1名,求这2名高三学生中恰有1名的成绩在本科分数线以下的概率;
(2)从该校所有高三学生中随机抽取3名,记被抽取到的3名高三学生本次高考模拟成绩在本科分数线以上(包含本科分数线)的男生人数为X,求X的分布列和数学期望.
27.(山西省晋城一中教育集团南岭爱物学校2023届高三下学期2月月考数学试题)随着时代发展和社会进步,教师职业越来越受青睐,考取教师资格证成为不少人的就业规划之一.当前,中小学教师资格考试分笔试和面试两部分.已知某市2022年共有5000名考生参加了中小学教师资格考试的笔试,现从中随机抽取100人的笔试成绩(满分视为100分),得到如下数据:
不及格
及格
师范类毕业
20
45
非师范类毕业
20
15
(1)能否有99%的把握认为考生的笔试成绩与是否为师范类毕业有关?
(2)考生甲为提升笔试成绩,报名参加了某教师资格考试知识竞赛,该竞赛要回答两类问题,每位参赛者回答次(),每次回答一个问题,若回答正确,则下一个问题从类中随机抽取;若回答错误,则下一个问题从类中随机抽取.规定每位参赛者回答的第一个问题从类中抽取,已知考生甲能正确回答类问题的概率为,能正确回答类问题的概率为,且每次回答问题正确与否是相互独立的,求考生甲第次回答正确的概率.
附:,其中.
0.05
0.025
0.01
3.841
5.024
6.635
28.(山西省太原市2023届高三上学期期末数学试题)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,整理测量结果得到如下频率分布直方图:
(1)求这500件产品质量指标值的样本平均值和样本方差(同一组的数据用该组区间的中点值作代表);
(2)由直方图可以认为,这种产品的质量指标Z服从正态分布,其中近似为样本平均数近似为样本方差.
(ⅰ)利用该正态分布,求;
(ⅱ)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间的产品件数.利用(ⅰ)的结果,求.
附:;若,则.
29.(安徽省合肥市2023届高三下学期第一次教学质量检测数学试题)研究表明,温度的突然变化会引起机体产生呼吸道上皮组织的生理不良反应,从而导致呼吸系统疾病的发生或恶化.某中学数学建模社团成员欲研究昼夜温差大小与该校高三学生患感冒人数多少之间的关系,他们记录了某周连续六天的温差,并到校医务室查阅了这六天中每天高三学生新增患感冒而就诊的人数,得到资料如下:
日期
第一天
第二天
第三天
第四天
第五天
第六天
昼夜温差x(℃)
4
7
8
9
14
12
新增就诊人数y(位)
参考数据:,.
(1)已知第一天新增患感冒而就诊的学生中有7位女生,从第一天新增的患感冒而就诊的学生中随机抽取3位,若抽取的3人中至少有一位男生的概率为,求的值;
(2)已知两个变量x与y之间的样本相关系数,请用最小二乘法求出y关于x的经验回归方程,据此估计昼夜温差为15℃时,该校新增患感冒的学生数(结果保留整数).
参考公式:,
30.(安徽省蚌埠市2023届高三下学期第二次教学质量检查数学试题)有研究显示,人体内某部位的直径约的结节约有0.2%的可能性会在1年内发展为恶性肿瘤.某医院引进一台检测设备,可以通过无创的血液检测,估计患者体内直径约的结节是否会在1年内发展为恶性肿瘤,若检测结果为阳性,则提示该结节会在1年内发展为恶性肿瘤,若检测结果为阴性,则提示该结节不会在1年内发展为恶性肿瘤.这种检测的准确率为85%,即一个会在1年内发展为恶性肿瘤的患者有85%的可能性被检出阳性,一个不会在1年内发展为恶性肿瘤的患者有85%的可能性被检出阴性.患者甲被检查出体内长了一个直径约的结节,他做了该项无创血液检测.
(1)求患者甲检查结果为阴性的概率;
(2)若患者甲的检查结果为阴性,求他的这个结节在1年内发展为恶性肿瘤的概率(结果保留5位小数);
(3)医院为每位参加该项检查的患者缴纳200元保险费,对于检测结果为阴性,但在1年内发展为恶性肿瘤的患者,保险公司赔付该患者20万元,若每年参加该项检查的患者有1000人,请估计保险公司每年在这个项目上的收益.
相关试卷
这是一份备战2024年新高考五省新高考数学复习之大题精编 专题6 导数 解答题30题专项提分计划(安徽、吉林、黑龙江、云南、山西备战2024年新高考五省通用),文件包含五省新高考数学复习专题6导数解答题30题专项提分计划安徽吉林黑龙江云南山西五省通用解析版docx、五省新高考数学复习专题6导数解答题30题专项提分计划安徽吉林黑龙江云南山西五省通用原卷版docx等2份试卷配套教学资源,其中试卷共68页, 欢迎下载使用。
这是一份备战2024年新高考五省新高考数学复习之大题精编 专题5 圆锥曲线 解答题30题专项提分计划(安徽、吉林、黑龙江、云南、山西备战2024年新高考五省通用),文件包含五省新高考数学复习专题5圆锥曲线解答题30题专项提分计划安徽吉林黑龙江云南山西五省通用解析版docx、五省新高考数学复习专题5圆锥曲线解答题30题专项提分计划安徽吉林黑龙江云南山西五省通用原卷版docx等2份试卷配套教学资源,其中试卷共69页, 欢迎下载使用。
这是一份备战2024年新高考五省新高考数学复习之大题精编 专题3 立体几何 解答题30题专项提分计划(安徽、吉林、黑龙江、云南、山西备战2024年新高考五省通用),文件包含五省新高考数学复习专题3立体几何解答题30题专项提分计划安徽吉林黑龙江云南山西五省通用解析版docx、五省新高考数学复习专题3立体几何解答题30题专项提分计划安徽吉林黑龙江云南山西五省通用原卷版docx等2份试卷配套教学资源,其中试卷共66页, 欢迎下载使用。
