|教案下载
搜索
    上传资料 赚现金
    湘教版数学九年级上册 5.1 总数平均数与方差的估计-教学设计
    立即下载
    加入资料篮
    湘教版数学九年级上册 5.1 总数平均数与方差的估计-教学设计01
    湘教版数学九年级上册 5.1 总数平均数与方差的估计-教学设计02
    湘教版数学九年级上册 5.1 总数平均数与方差的估计-教学设计03
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级上册5.1 总体平均数与方差的估计一等奖教案设计

    展开
    这是一份数学九年级上册5.1 总体平均数与方差的估计一等奖教案设计,共7页。

    新湘教版 数学 九年级上5.1 总数平均数与方差的估计教学设计

    课题

    5.1 总数平均数与方差的估计

    单元

    第五单元

    学科

    数学

    年级

    九年级

    学习

    目标

    1. 知识与技能:

    ①了解样本平均数、方差与总体平均数、方差的关系;

    ②能利用样本平均数、方差估计总体的平均数、方差。

    1. 过程与方法:

    ①采用引导、启发、合作、探究等方法,经历观察、发现、动手操作、归纳、交流等文学活动,获得知识,形成技能,发展思维,学会学习.

    ②逐步培养学生分析问题、解决问题的能力;

    ③领会教学活动中的类比思想,提高学生学习数学的积极性;

    1. 情感态度与价值观:

    ①通过解答实际问题,激发学生学数学的兴趣,增长社会见识。

    ②使学生亲身经历用样本估计整体的过程,感受数学实用性,培养学生积极情感和态度。

    重点

    可用简单随机样本的平均数与方差分别去估计总体的平均数与方差。

    难点

    可用简单随机样本的平均数与方差分别去估计总体的平均数与方差。

     

    教学过程

    教学环节

    教师活动

    学生活动

    设计意图

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    回顾知识

    +

    导入新课

     

     

    在前面的学习中,我们已经学过了有关总体、样本的定义,以及有关平均数、方差等的计算。我们今天将进一步探索总体与样本的关系,在上新课之前,我们一起回顾下我们学过的知识:

    1.平均数:计算公式:=

    作用:反映一组数据的整体情况与整体水平,反映数据集中趋势的一项指标.

    2.方差:计算公式:S²=

    作用:来衡量一组数据的波动大小,反映一组数据稳定性.

    【导入知识】某农科院在某地区选择了自然条件相同的两个试验区,在种植面积相同的条件下,用相同的管理技术试种了两个品种的水稻,如何确定哪个品种的水稻在该地区更有推广价值呢?

    有同学说,可以在两个实验区分别检查一下这两种水稻,那么具体要怎么检查呢?

      这个问题看似很庞大,但如果找到好的方法,会很容易解决。我们可以在本节课的最后再来回答这个问题。

    阅读下面的报道,回答问题.

    从上述报道可见, 北京市统计局进行2012 年度人口调查采用的是什么调查方式?

    从报道中可以看出,北京统计局进行人口调查是采用的抽样调查的方法。

     

     

     

     

     

     

     

     

     

     

     

     

     

    学生思考并回答问题。并跟着教师的讲解思路思考问题,并探究知识。

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    导入新课,利用导入的例子引起学生的注意力。

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    讲授新课

    +

    例题讲解

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    从刚刚导入新课的探究中,我们了解到:

    1.实际上,在研究某个总体时,一般用数据表示总体中每个个体的某种数量特性.

           总体:所有这些数据组成一个总体;

           样本:样本是从总体中抽取的部分数据.

    2.样本蕴含着总体的许多信息,这使得我们有可能通过样本的某些特性去推断总体的相应特性.

    3.从总体中抽取样本,通过对样本的分析,去推断总体的情况,这是统计的基本思想. 用样本平均数、样本方差分别去估计总体平均数、总体方差就是这一思想的一个体现.

    【说一说】(1)如何估计某城市所有家庭一年内平均丢弃的塑料袋个数?

    2)在检查甲、乙两种棉花的纤维长度时,如何估计哪种棉花的纤维长度比较整齐?

    可以进行简单随机抽样,然后用样本去推断总体.

    【动脑筋】某农科院在某地区选择了自然条件相同的两个试验区,用相同的管理技术试种甲、乙两个品种的水稻各100. 如何确定哪个品种的水稻在该地区更有推广价值呢?

        为了选择合适的稻种,我们需要关心这两种水稻的平均产量及产量的稳定性(即方差).

        于是,待水稻成熟后,各自从这100亩水稻随机抽取10亩水稻,记录它们的亩产量(样本),数据如下表所示:

    接下来,我们看一些具体的例子:

    10亩甲、乙品种的水稻的平均产量分别为:

    x=8 65 + 885 + 886 + 876 + 893 + 885 + 870 + 905 + 890 + 895= 885

    x= 870 + 875 + 884 + 885 + 886 + 888 + 882 + 890 + 895 + 896= 885.1.

     由于这10亩水稻是简单随机抽取的,因此可以分别用这10亩水稻的平均产量去估计这两种水稻大面积种植后的平均产量.

     由于在试验区这两种水稻的平均产量相差很小,从而我么可以估计出大面积种植这两种水稻后的平均产量也相应相差很小,所以,单从平均产量这一角度来考虑,我们还不能确定哪种水稻更有推广价值.因此,我们还需考虑着两种水稻产量的稳定性.

    利用计算器,我们可计算出这10 亩甲、乙品种水稻产量的方差分别为129.659.09. 由于59.09<129.6,即S² < S².

    因此我们可以估计种植乙种水稻的产量要比种植甲种水稻的产量稳定.从而我们可以得出:在该地区,种植乙种水稻更有推广价值.

    总体平均数与方差的估计:

         由于简单随机样本客观地反映了实际情况,能够代表总体,因此我们可用简单随机样本的平均数与方差分别去估计总体的平均数与方差.

    1从某校参加毕业会考的学生中,随机抽查了30名学生的数学成绩,分数如下:

    90 84 84 86 87 98 78 82 90 93

    68 95 84 71 78 61 94 88 77 100

    70 97 85 68 99 88 85 92 93 97

       试估计该校参加毕业考试的学生的数学平均成绩.(结果保留整数)

    解:x=(908497)≈85(),即平均数为85.

    于是可以估计,该校参加毕业会考的学生的数学平均成绩约为85.

    可以进行简单随机抽样,然后用样本平均数去推断总体平均成绩.

    2一台机床生产一种直径为40mm 的圆柱形零件,在正常生产时,生产的零件的直径的方差应不超过0.01.如果超过0.01,则机床应检修调整.下表是某日8:30—9:3010:00—11:00 两个时段中各随机抽取10个零件量出的直径的数值(单位:mm):

    试判断在这两个时段内机床生产是否正常.

    解:在8:30—9:30这段时间内生产的零件中,随机抽取的10个零件的直径的平均数、方差1分别为:

    =40+39.8×4+40.1×2+40.2×3)÷10=40mm

    1 ==0.03

     10:0011:00这段时间内生产的零件中,随机抽取的10个零件的直径的、方差2分别为:

    =40×5+39.9×3+40.2+40.1)÷10=40mm

    2 ==0.008

     由于随机抽取的8:309:30这段时间内生产的10个零件的直径的方差为0.03,远远超过0.01的界限,因此我们可以推断在这段时间内该机床生产不正常.

     类似地,我们可以推断在10:0011:00这段时间内该机床生产正常.

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    结合导入的思考和老师的讲解,利用探究理解和掌握总体平均数与方差的估计。

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    老师在例题讲解的时候,自己先思考,然后再听老师讲解。

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    老师在例题讲解的时候,自己先思考,然后再听老师讲解。

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    讲授知识,让学生掌掌握理解和掌握总体平均数与方差的估计。

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    让学生知道本节课的学习内容和重点。

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    让学生知道本节课的学习内容和重点。

     

     

     

     

    课堂练习

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    课堂练习

     1.为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个)332528262531.如果该班有45名学生,那么根据提供的数据,估计本周全班同学各家总共丢弃塑料袋的数量约( C)

     A900      B1080

     C1260      D1800

     2. 某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后甲、乙两名战士进入决赛.在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.01,则下列说法中,正确的是( C    )

        A.甲的成绩比乙的成绩稳定   

    B.甲、乙两人成绩的稳定性相同

        C.乙的成绩比甲的成绩稳定   

    D.无法确定谁的成绩更稳定

     3.小辰家买了一辆小轿车,小辰连续记录了七天中每天行驶的路程:

    请你用学过的统计知识解决下面的问题:

    (1)小辰家的轿车每月(30天计算)要行驶多少千米?

    解:40(千米)

             40×301 200(千米)

        故小辰家的轿车每月要行驶1 200千米;

    (2)若每行驶100千米需汽油8升,汽油每升4.74元,请你算出小辰家一年(12个月计算)的汽油费用大约是多少元?(精确到百元)

    解:4.74×8×1200×12÷1005460.485500()

        故小辰家一年的汽油费用大约是5500元.

     4.甲、乙两台包装机同时包装质量为500克的白糖,从中各随机抽出10袋,测得实际质量如下(单位:g)

    甲:501 500 503 506 504 506 500 498 497 495

    乙:503 504 502 498 499 501 505 497 502 499

    (1)分别计算两个样本的方差;

    解:x(501500503506504506500498497495)÷10501(g)

     x(503504502498499501505497502499)÷10501(g)

          s212.6s26.4

    (2)哪台包装机包装的质量较稳定?

    解:s2s2乙包装机包装的质量比较稳定.

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    学生自主完课堂练习中的练习,然后在做完之后根据老师的讲解进一步巩固知识。

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    借助练习,检测学生的知识掌握程度,同时便于学生巩固知识。

     

    课堂小结

    在课堂的最后,我们一起来回忆总结我们这节课所学的知识点:

      用样本推断总体的过程:

      首先选择随机样本,计算样本的平均数和方差,用来估计总体的样本和方差。在大多数情况下,当样本容量足够大时,用简单随机样本的统计量去对总体作出相应的估计是合理的.这样我们就完成了用样本推断总体的过程。

    方差:S²=

    平均数:=

    跟着老师回忆知识,并记忆本节课的知识。

    帮助学生加强记忆知识。

    板书

    总数平均数与方差的估计

    用样本推断总体的过程:

      首先选择随机样本,计算样本的平均数和方差,用来估计总体的样本和方差。在大多数情况下,当样本容量足够大时,用简单随机样本的统计量去对总体作出相应的估计是合理的.这样我们就完成了用样本推断总体的过程。

    方差:S²=

    平均数:=

    借助板书,让学生知识本节课的重点。

    作业

    教材第144页练习第12.

     

     

     

     

    相关教案

    湘教版九年级上册5.1 总体平均数与方差的估计优秀教案及反思: 这是一份湘教版九年级上册5.1 总体平均数与方差的估计优秀教案及反思,共5页。教案主要包含了创设情境,导入新课,课堂小结,升华知识等内容,欢迎下载使用。

    初中数学湘教版九年级上册5.1 总体平均数与方差的估计精品教学设计: 这是一份初中数学湘教版九年级上册5.1 总体平均数与方差的估计精品教学设计,共7页。

    湘教版九年级上册5.1 总体平均数与方差的估计精品教学设计: 这是一份湘教版九年级上册5.1 总体平均数与方差的估计精品教学设计,共6页。教案主要包含了创设情境,导入新课,课堂小结,升华知识等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        湘教版数学九年级上册 5.1 总数平均数与方差的估计-教学设计
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map