2022-2023学年北京市房山区燕山地区七下数学期末联考试题含答案
展开2022-2023学年北京市房山区燕山地区七下数学期末联考试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.下列函数中,是反比例函数的为( )
A. B. C. D.
2.如图,已知中,,,将绕点顺时针方向旋转到的位置,连接,则的长为( )
A. B. C. D.
3.甲、乙两名运动员10次比赛成绩如表,S12,S22分别表示他们测试成绩的方差,则有( )
| 8分 | 9分 | 10分 |
甲(频数) | 4 | 2 | 4 |
乙(频数) | 3 | 4 | 3 |
A.S12>S22 B.S12=S22 C.S12<S22 D.无法确定
4.如图1,在矩形中,动点从点出发,沿方向运动至点处停止.设点运动的路程为,的面积为,如果关于的函致图象如图2所示,则矩形的周长是( )
图1 图2
A. B. C. D.
5.下列图形是轴对称的是( )
A. B. C. D.
6.计算(﹣a)2•a3的结果正确的是( )
A.﹣a6 B.a6 C.﹣a5 D.a5
7.下列调查中,适宜采用抽样调查方式的是( )
A.调查八年级某班学生的视力情况
B.调查乘坐飞机的旅客是否携带违禁物品
C.调查某品牌LED灯的使用寿命
D.学校在给学生订制校服前尺寸大小的调查
8.下列说法:
①对角线互相垂直的四边形是菱形;
②矩形的对角线垂直且互相平分;
③对角线相等的四边形是矩形;
④对角线相等的菱形是正方形;
⑤邻边相等的矩形是正方形.其中正确的是( )
A.个 B.个 C.个 D.个
9.如图的阴影部分是两个正方形,图中还有两个直角三角形和一个大正方形,则阴影部分的面积是( )
A.16 B.25 C.144 D.169
10.已知点P(a,m),Q(b,n)都在反比例函数y=﹣的图象上,且a<0<b,则下列结论一定正确的是( )
A.m<n B.m>n C.m+n<o D.m+n>0
11.直线y=x-2与x轴的交点坐标是( )
A.(2,0) B.(-2,0) C.(0,-2) D.(0,2)
12.若关于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x﹣1)=1必有一根为( )
A. B.2020 C.2019 D.2018
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13.今年我市有5万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个调查中样本容量是______.
14.在一次“人与环境”知识竞赛中,共有25个题,每题四个答案,其中只有一个答案正确,每选对一题得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他至少要答对______题
15.方程的解是__________.
16.为了解宿迁市中小学生对春节联欢晚会语言类节目喜爱的程度,这项调查采用__________方式调查较好(填“普查”或“抽样调查”).
17.方程的解是 .
三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18.(5分)某中学八年级组织了一次“汉字听写比赛”,每班选25名同学参加比赛,成绩分为A,B,C,D四个等级,其中A等级得分为100分,B等级得分为85分,C等级得分为75分,D等级得分为60分,语文教研组将八年级一班和二班的成绩整理并绘制成如下的统计图,请根损换供的信息解答下列问题.
(1)把一班比赛成统计图补充完整;
(2)填表:
| 平均数(分) | 中位数(分) | 众数(分) |
一班 | a | b | 85 |
二班 | 84 | 75 | c |
表格中:a=______,b=______,c=_______.
(3)请从以下给出的两个方面对这次比赛成绩的结果进行分析:
①从平均数、众数方面来比较一班和二班的成绩;
②从B级以上(包括B级)的人数方面来比较-班和二班的成绩.
19.(5分)如图,小明家所在区域的部分平面示意图,请你分别以正东、正北为轴、轴正方向,在图中建立平面直角坐标系,使汽车站的坐标是,
(1)请你在图中画出所建立的平面直角坐标系;
(2)用坐标说明学校和小明家的位置;
(3)若图中小正方形的边长为,请你计算小明家离学校的距离.
20.(8分)已知直线l1:y=x+n﹣2与直线l2:y=mx+n相交于点P(1,2).
(1)求m,n的值;
(2)请结合图象直接写出不等式mx+n>x+n﹣2的解集.
(3)若直线l1与y轴交于点A,直线l2与x轴交于点B,求四边形PAOB的面积.
21.(10分)问题:探究函数y=|x|﹣2的图象与性质.
小华根据学习函数的经验,对函数y=|x|﹣2的图象与性质进行了探究.
下面是小华的探究过程,请补充完整:
(1)在函数y=|x|﹣2中,自变量x可以是任意实数;
(2)如表是y与x的几组对应值
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 1 | 0 | ﹣1 | ﹣2 | ﹣1 | 0 | m | … |
①m等于多少;
②若A(n,2018),B(2020,2018)为该函数图象上不同的两点,则n等于多少;
(3)如图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并根据描出的点画出该函数的图象;根据函数图象可得:该函数的最小值为多少;该函数图象与x轴围成的几何图形的面积等于多少;
(4)已知直线y1=x﹣与函数y=|x|﹣2的图象交于C,D两点,当y1≥y时,试确定x的取值范围.
22.(10分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用(元)与种植面积之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.
(1)直接写出当和时,与的函数关系式;
(2)广场上甲、乙两种花卉的种植面积共,若甲种花卉的种植面积不少于,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?
23.(12分)(1)计算:()﹣()+2
(2)已知:x=﹣1,求代数式x2+2x﹣2的值.
参考答案
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1、C
2、B
3、A
4、C
5、D
6、D
7、C
8、B
9、B
10、B
11、A
12、B
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13、1
14、19
15、
16、抽样调查
17、
三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18、 (1) 统计图补充完整如图所示见解析;(2)二班的平均数为:a=82.8 ,一班的中位数为:b=85, 二班的众数为:c=100 ; (3)①从平均数和众数的角度来比较二班的成绩更好;②从B级以上(包括B级)的人数的角度来比较一班的成绩更好.
19、(1)见解析;(2)学校(-2,-2),小明家(1,2);(3)2500m
20、(1)m=﹣1,n=3;(2)x<1;(3)四边形PAOB的面积为:3.1.
21、(2)①m=1;②﹣2020;(1)该函数的最小值为﹣2;该函数图象与x轴围成的几何图形的面积是4;(4)当y1≥y时x的取值范围是﹣1≤x≤1.
22、(1);(2)应分配甲种花卉种植面积为,乙种花卉种植面积为,才能使种植总费用最少,最少总费用为119000元.
23、 (1) ;(2)0.
2023-2024学年北京市房山区燕山地区数学九年级第一学期期末统考模拟试题含答案: 这是一份2023-2024学年北京市房山区燕山地区数学九年级第一学期期末统考模拟试题含答案,共9页。试卷主要包含了已知二次函数y=等内容,欢迎下载使用。
2023-2024学年北京市房山区燕山地区八上数学期末统考模拟试题含答案: 这是一份2023-2024学年北京市房山区燕山地区八上数学期末统考模拟试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,把式子化筒的结果为,下列因式分解结果正确的有等内容,欢迎下载使用。
北京市燕山地区2022-2023学年七下数学期末综合测试试题含答案: 这是一份北京市燕山地区2022-2023学年七下数学期末综合测试试题含答案,共8页。