2022-2023学年天津和平区天津市双菱中学数学七下期末经典试题含答案
展开
这是一份2022-2023学年天津和平区天津市双菱中学数学七下期末经典试题含答案,共7页。
2022-2023学年天津和平区天津市双菱中学数学七下期末经典试题(时间:120分钟 分数:120分) 学校_______ 年级_______ 姓名_______ 注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。 一、选择题(每小题3分,共30分)1.一组数据5,2,3,5,4,5的众数是( )A.3 B.4 C.5 D.82.关于▱ABCD的叙述,正确的是( )A.若AB⊥BC,则▱ABCD是菱形 B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形 D.若AB=AD,则▱ABCD是正方形3.在长度为1的线段上找到两个黄金分割点P,Q,则PQ=( )A. B. C. D.4.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连结CE.若▱ABCD的周长为16,则△CDE的周长是( )A.16 B.10 C.8 D.65.若,则的值用、可以表示为 ( )A. B. C. D.6.如图,已知△ABC中,∠C=90°,AD平分∠BAC,且CD:BD=3:4.若BC=21,则点D到AB边的距离为( )A.7 B.9 C.11 D.147.为了更好地迎接庐阳区排球比赛,某校积极准备,从全校学生中遴选出21名同学进行相应的排球训练,该训练队成员的身高如下表:身高(cm)170172175178180182185人数(个)2452431则该校排球队21名同学身高的众数和中位数分别是(单位:cm)( )A.185,178 B.178,175 C.175,178 D.175,1758.代数式在实数范围内有意义,实数取值范围是( )A. B. C. D.9.某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选取20名同学统计了各自家庭一个月约节水情况.见表:节水量/m30.20.250.30.40.5家庭数/个24671请你估计这400名同学的家庭一个月节约用水的总量大约是( )A.130m3 B.135m3 C.6.5m3 D.260m310.点A(-2,5)在反比例函数的图像上,则该函数图像位于( )A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限二、填空题(本大题共有6小题,每小题3分,共18分)11.如图,菱形ABCD的对角线相交于点O,AC=2,BD=2,将菱形按如图方式折叠,使点B与点O重合,折痕为EF,则五边形AEFCD的周长为_____________12.当________时,方程无解.13.如图,在△ABC中,∠ACB=90°,D、E、F分别是AC、AB、BC的中点,CE=3,则DF_____.14.如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于_____.15.如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快___s后,四边形ABPQ成为矩形.16.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,AB=4,点D是BC上一动点,以BD为边在BC的右侧作等边△BDE,F是DE的中点,连结AF,CF,则AF+CF的最小值是_____.三、解下列各题(本大题共8小题,共72分)17.(8分)在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN⊥DM,垂足为M,交∠CBE的平分线于点N.(1)写出点C的坐标;(2)求证:MD=MN;(3)连接DN交BC于点F,连接FM,下列两个结论:①FM的长度不变;②MN平分∠FMB,其中只有一个结论是正确的,请你指出正确的结论,并给出证明 18.(8分)如图,在□ABCD中,E、F为对角线BD上的两点,且∠DAE=∠BCF.(1)求证:AE=CF;(2)求证:AE∥CF. 19.(8分)(1)解方程: (2)解方程: 20.(8分)某服装厂准备加工 240 套服装,在加工 80 套后,采用了新技术,使每天的工作效率变为原来的 2 倍,结果共 10 天完成,求该厂原来每天加工多少套 服装? 21.(8分)如图,已知二次函数的图象顶点在轴上,且,与一次函数的图象交于轴上一点和另一交点.求抛物线的解析式;点为线段上一点,过点作轴,垂足为,交抛物线于点,请求出线段的最大值. 22.(10分)我们将、称为一对“对偶式”,因为,所以构造“对偶式”再将其相乘可以有效的将和中的“”去掉.于是二次根式除法可以这样解:如,.像这样,通过分子,分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.根据以上材料,理解并运用材料提供的方法,解答以下问题:(1)比较大小________(用“”、“”或“”填空);(2)已知,,求的值;(3)计算: 23.(10分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,(1)请在所给的网格内画出以线段AB、BC为边的菱形,并写出点D的坐标 .(2)线段BC的长为 ,菱形ABCD的面积等于 24.(12分)如图,△ABC中,AB=BC=5cm,AC=6cm,点P从顶点B出发,沿B→C→A以每秒1cm的速度匀速运动到A点,设运动时间为x秒,BP长度为ycm.某学习小组对函数y随自变量x的变化而变化的规律进行了探究.下面是他们的探究过程,请补充完整:(1)通过取点,画图,测量,得到了x(秒)与y(cm)的几组对应值:x01234567891011y0.01.02.03.04.0 4.54.14 4.55.0要求:补全表格中相关数值(保留一位小数);(2)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当x约为______时,BP=CP. 参考答案 一、选择题(每小题3分,共30分)1、C2、C3、C4、C5、C6、B7、D8、A9、A10、D 二、填空题(本大题共有6小题,每小题3分,共18分)11、212、113、=314、9615、116、2. 三、解下列各题(本大题共8小题,共72分)17、(1)点的坐标为;(2)见解析;(3)MN平分∠FMB成立,证明见解析18、(1)证明见解析(2)证明见解析19、(1);(2),20、16套.21、 (1) ;(2)线段的最大值为.22、(1);(2);(3)23、(1)见解析,(-2,1)(2) ,1524、(1)见解析,5.0;4.1;(2)见解析;(3)2.5或9.1
相关试卷
这是一份2023-2024学年天津和平区天津市双菱中学八上数学期末检测试题含答案,共6页。
这是一份天津市和平区双菱中学2023-2024学年数学八上期末联考模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,如果,那么的值为,下列运算正确的是等内容,欢迎下载使用。
这是一份天津市和平区双菱中学2023-2024学年八上数学期末检测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列各式中,正确的是,数据5,7,8,8,9的众数是,若分式的值不存在,则的值是等内容,欢迎下载使用。