2022-2023学年广东省南海区石门实验中学数学七年级第二学期期末联考模拟试题含答案
展开2022-2023学年广东省南海区石门实验中学数学七年级第二学期期末联考模拟试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.如图,矩形纸片ABCD,AB=3,AD=5,折叠纸片,使点A落在BC边上的E处,折痕为PQ,当点E在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点E在BC边上可移动的最大距离为( )
A.1 B.2 C.4 D.5
2.满足不等式的正整数是( )
A.2.5 B. C.-2 D.5
3.某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,1.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是( )
A.平均数不变,方差不变 B.平均数不变,方差变大
C.平均数不变,方差变小 D.平均数变小,方差不变
4.童童从家出发前往体育中心观看篮球比赛,先匀速步行至公交汽车站,等了一会儿,童童搭乘公交汽车至体育中心观看比赛,比赛结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x表示童童从家出发后所用时间,y表示童童离家的距离.下图中能反映y与x的函数关系式的大致图象是( )
A. B. C. D.
5.如图,在同一直线上,甲、乙两人分别从A,B两点同时向右出发,甲、乙均为匀速,图2表示两人之间的距离y(m)与所经过的时间t(s)之间的函数关系图象,若乙的速度为1.5m/s,则经过30s,甲自A点移动了( )
A.45m B.7.2m C.52.2m D.57m
6.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:
选手 | 甲 | 乙 | 丙 | 丁 |
平均数(环) | 9. 3 | 9. 3 | 9. 3 | 9. 3 |
方差 | 0. 025 | 0. 015 | 0. 035 | 0. 023 |
则这四人中成绩发挥最稳定的是( )
A.甲 B.乙 C.丙 D.丁
7.如图直线:与直线:相交于点P(1,2).则关于x的不等式的解集为( )
A.x<1 B.x>2 C.x>1 D.x<2
8.学校升旗仪式上,徐徐上升的国旗的高度与时间的关系可以用一幅图近似地刻画,这幅图是下图中的( )
A. B.
C. D.
9.已知关于x的方程x2-kx+6=0有两个实数根,则k的值不可能是( )
A.5 B.-8 C.2 D.4
10.某旅游纪念品商店计划制作一种手工编织的工艺品600件,制作120个以后,临近旅游旺季,商店老板决定加快制作进度,后来每天比原计划多制作20个,最后共用时11天完成,求原计划每天制作该工艺品多少个?设原计划每天制作该工艺品个,根据题意可列方程( )
A. B.
C. D.
二、填空题(本大题共有6小题,每小题3分,共18分)
11.如图所示,在菱形纸片ABCD中,AB=4,∠BAD=60°,按如下步骤折叠该菱形纸片:
第一步:如图①,将菱形纸片ABCD折叠,使点A的对应点A′恰好落在边CD上,折痕EF分别与边AD、AB交于点E、F,折痕EF与对应点A、A′的连线交于点G.
第二步:如图②,再将四边形纸片BCA′F折叠使点C的对应点C′恰好落在A′F上,折痕MN分别交边CD、BC于点M、N.
第三步:展开菱形纸片ABCD,连接GC′,则GC′最小值是_____.
12.判断下列各式是否成立:
=2; =3; =4; =5
类比上述式子,再写出两个同类的式子_____、_____,你能看出其中的规律吗?用字母表示这一规律_____,
13.不等式2x+8≥3(x+2)的解集为_____.
14.当1≤x≤5时,
15.对于平面内任意一个凸四边形ABCD,现从以下四个关系式: ①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是_______.
16.在中,,,点是中点,点在上,,将沿着翻折,点的对应点是点,直线与交于点,那么的面积__________.
三、解下列各题(本大题共8小题,共72分)
17.(8分)计算:
18.(8分)如图1,在ABC中,∠A=80°,BD、CE分别平分∠ABC、∠ACB,BD与CE交于点F.
(1)求∠BFC的度数;
(2)如图2,EG、DG分别平分∠AEF、∠ADF, EG与DG交于点G ,求∠EGD的度数.
19.(8分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.
(1)求每分钟向储存罐内注入的水泥量.
(2)当3≤x≤5.5时,求y与x之间的函数关系式.
(3)储存罐每分钟向运输车输出的水泥量是 立方米,从打开输入口到关闭输出口共用的时间为 分钟.
20.(8分)如图,在中,点是边上一个动点,过点作直线,设交的平分线于点,交的外角平分线于点.
(1)探究与的数量关系并加以证明;
(2)当点运动到上的什么位置时,四边形是矩形,请说明理由;
(3)在(2)的基础上,满足什么条件时,四边形是正方形?为什么?
21.(8分)计算:
(1)
(2),,求的值.
22.(10分)解不等式组:, 并把解集在数轴上表示出来.
23.(10分)某校举办的八年级学生数学素养大赛共设个项目:七巧板拼图,趣题巧解,数学应用,每个项目得分都按一定百分比折算后计入总分,总分高的获胜,下表为小米和小麦两位同学的得分情况(单位:分):
| 七巧板拼图 | 趣题巧解 | 数学应用 |
小米 | |||
小麦 |
若七巧板拼图,趣题巧解,数学应用三项得分分别按折算计入总分,最终谁能获胜?
若七巧板拼图按折算,小麦 (填“可能”或“不可能”)获胜.
24.(12分)某学校打算招聘英语教师。对应聘者进行了听、说、读、写的英语水平测试,其中甲、乙两名应聘者的成绩(百分制)如下表所示。
(1)如果学校想招聘说、读能力较强的英语教师,听、说、读、写成绩按照2:4:3:1的比确定,若在甲、乙两人中录取一人,请计算这两名应聘者的平均成绩(百分制)。从他们的成绩看,应该录取谁?
(2)学校按照(1)中的成绩计算方法,将所有应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最后左边一组分数为:)。
①参加该校本次招聘英语教师的应聘者共有______________人(直接写出答案即可)。
②学校决定由高分到低分录用3名教师,请判断甲、乙两人能否被录用?并说明理由。
参考答案
一、选择题(每小题3分,共30分)
1、B
2、D
3、C
4、A
5、C
6、B
7、C
8、A
9、D
10、C
二、填空题(本大题共有6小题,每小题3分,共18分)
11、
12、
13、x≤2
14、1.
15、
16、或
三、解下列各题(本大题共8小题,共72分)
17、5
18、(1)130〬(2)155〬
19、 (1)5立方米;(2)y=4x+3;(3)1,11.
20、(1)OE=OF,理由见解析;(2)当点O运动到AC的中点时,四边形AECF是矩形.理由见解析;(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.理由见解析;
21、 (1) ;(2).
22、-3<x≤1
23、(1)小麦获胜;(2)不可能
24、(1)录取乙;(2)①30,②乙一定能被录用;甲不一定能被录用,见解析.
2023-2024学年广东省南海区石门实验中学数学九上期末质量跟踪监视试题含答案: 这是一份2023-2024学年广东省南海区石门实验中学数学九上期末质量跟踪监视试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列事件中,为必然事件的是,下列函数中属于二次函数的是等内容,欢迎下载使用。
2023-2024学年广东省南海区石门实验中学数学八上期末达标检测试题含答案: 这是一份2023-2024学年广东省南海区石门实验中学数学八上期末达标检测试题含答案,共7页。试卷主要包含了已知,则下列变形正确的是等内容,欢迎下载使用。
2023-2024学年广东省南海区石门实验中学八上数学期末达标检测试题含答案: 这是一份2023-2024学年广东省南海区石门实验中学八上数学期末达标检测试题含答案,共6页。试卷主要包含了下列命题,若使分式有意义,则的取值范围是,下列各式为分式的是,下列各数是无理数的是等内容,欢迎下载使用。