2022-2023学年贵州省都匀市第六中学数学七年级第二学期期末质量检测试题含答案
展开2022-2023学年贵州省都匀市第六中学数学七年级第二学期期末质量检测试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.已知点P(a+l,2a-3)关于x轴的对称点在第一象限,则a的取值范围是( )
A. B. C. D.
2.下列各式-3x,,,-,,,中,分式的个数为( )
A.1 B.2 C.3 D.4
3.在数学拓展课《折叠矩形纸片》上,小林发现折叠矩形纸片ABCD可以进行如下操作:①把△ABF翻折,点B落在C边上的点E处,折痕为AF,点F在BC边上;②把△ADH翻折,点D落在AE边上的点G处,折痕为AH,点H在CD边上,若AD=6,CD=10,则=( )
A. B. C. D.
4.已知菱形的两条对角线分别为6和8,则菱形的面积为( )
A.48 B.25 C.24 D.12
5.已知一次函数,随的增大而减小,则的取值范围是( )
A. B. C. D.
6.直角坐标系中,A、B两点的横坐标相同但均不为零,则直线AB( )
A.平行于x轴 B.平行于y轴 C.经过原点 D.以上都不对
7.关于x的一元二次方程(k﹣1)x2﹣2x+3=0有两个实数根,则k的取值范围是( )
A.k≤且k≠1 B.k≤ C.k<且k≠1 D.k<
8.如图,下列判断中正确的是( )
A.如果∠3+∠2=180°,那么AB∥CD B.如果∠1+∠3=180°,那么AB∥CD
C.如果∠2=∠4,那么AB∥CD D.如果∠1=∠5,那么AB∥CD
9.要使矩形ABCD为正方形,需要添加的条件是( )
A.AB=BC B.AD=BC C.AB=CD D.AC=BD
10.若,则下列各不等式不一定成立的是( )
A. B. C. D.
二、填空题(本大题共有6小题,每小题3分,共18分)
11.如图,在△ABC中,∠B=32°,∠BAC的平分线AD交BC于点D,若DE垂直平分AB,则∠C的度数为_____.
12.使代数式有意义的x的取值范围是_____.
13.已知正比例函数的图象经过点(﹣1,3),那么这个函数的解析式为_____.
14.某校女子排球队的15名队员中有4个人是13岁,7个人是14岁,4个人是15岁,则该校女好排球队队员的平均年龄是____岁.
15.在比例尺为1∶1 00 000的地图上,量得甲、乙两地的距离是15cm,则两地的实际距离 ▲ km.
16.一个数的平方等于这个数本身,这个数为_________.
三、解下列各题(本大题共8小题,共72分)
17.(8分)如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.
(1)证明:BE=CF.
(2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.
(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.
18.(8分)甲乙两人参加某项体育训练,近期五次测试成绩得分情况如图所示:
(1)分别求出两人得分的平均数;
(2)谁的方差较大?
(3)根据图表和(1)的计算,请你对甲、乙两人的训练成绩作出评价.
19.(8分)阅读下列材料,完成(1)、(2)小题.在平面直角坐标系中,已知轴上两点,的距离记作,如果,是平面上任意两点,我们可以通过构造直角三角形来求间的距离,如图1,过点、分别向轴、轴作垂线,和,,垂足分别是,,,,直线交于点,在中,,∴∴,我们称此公式为平面直角坐标系内任意两点,间的距离公式
(1)直接应用平面内两点间距离公式计算点,的距离为_________
(2)如图2,已知在平面直角坐标系中有两点,,为轴上任意一点,求的最小值
20.(8分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:
序号 项目 | 1 | 2 | 3 | 4 | 5 | 6 |
笔试成绩/分 | 85 | 92 | 84 | 90 | 84 | 80 |
面试成绩/分 | 90 | 88 | 86 | 90 | 80 | 85 |
根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分).
(1)这6名选手笔试成绩的中位数是________分,众数是________分;
(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比;
(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.
21.(8分)一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:
| A种水果/箱 | B种水果/箱 |
甲店 | 11元 | 17元 |
乙店 | 9元 | 13元 |
(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?
(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?
22.(10分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:OE=OF;
(2)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
23.(10分)用适当的方法解方程.
(1) (2)
24.(12分)古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由两工程队先后接力完成.工作队每天整治12米,工程队每天整治8米,共用时20天.
(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:
甲: 乙:
根据甲、乙两名同学所列的方程组,请你分别指出未知数表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:
甲:x表示________________,y表示_______________;
乙:x表示________________,y表示_______________.
(2)求两工程队分别整治河道多少米.(写出完整的解答过程)
参考答案
一、选择题(每小题3分,共30分)
1、B
2、D
3、A
4、C
5、B
6、B
7、A
8、D
9、A
10、D
二、填空题(本大题共有6小题,每小题3分,共18分)
11、84°.
12、x≥0且x≠2
13、y=﹣3x
14、14
15、15
16、0或1
三、解下列各题(本大题共8小题,共72分)
17、 (1)见解析;(2);(3)见解析
18、(1)13,13;(2)4,0.8;甲的方差大;(3)从平均数来看甲乙训练成绩一样,从图中可以看中,乙比较稳定,甲波动大.
19、(1)5;(2)
20、(1)84.5,84;
(2)笔试成绩和面试成绩所占的百分比分别是40%,60%;
(3)综合成绩排序前两名的人选是4号和2号选手.
21、(1)250;(2)甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利: 254元.
22、(1)证明见解析;(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形,理由见解析.
23、(1);(2),
24、(1)甲:表示工程队工作的天数,表示工程队工作的天数;
乙:表示工程队整治河道的米数,表示工程队整治河道的米数.
(2)两工程队分别整治了60米和120米.
2023-2024学年贵州省都匀市第六中学数学九上期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年贵州省都匀市第六中学数学九上期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了如图,,则下列比例式错误的是,关于x的一元二次方程x2+,方程的根是等内容,欢迎下载使用。
2023-2024学年贵州省都匀市第六中学九上数学期末复习检测试题含答案: 这是一份2023-2024学年贵州省都匀市第六中学九上数学期末复习检测试题含答案,共8页。试卷主要包含了如果等内容,欢迎下载使用。
贵州省都匀市第六中学2022-2023学年七下数学期末联考模拟试题含答案: 这是一份贵州省都匀市第六中学2022-2023学年七下数学期末联考模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,如图,在中,平分,,则的周长为,在平面直角坐标系中,点位于等内容,欢迎下载使用。