


上海市静安区风华初级中学2022-2023学年七下数学期末经典试题含答案
展开上海市静安区风华初级中学2022-2023学年七下数学期末经典试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.在下列说法中:
①有一个外角是 120°的等腰三角形是等边三角形.
② 有两个外角相等的等腰三角形是等边三角形.
③ 有一边上的高也是这边上的中线的等腰三角形是等边三角形.
④ 三个外角都相等的三角形是等边三角形.
其中正确的有( )
A.1 个 B.2 个 C.3 个 D.4 个
2.如图,在矩形中,
,
,点
是边
上一点,点
是矩形内一点,
,则
的最小值是( )
A.3 B.4 C.5 D.
3.如图,矩形ABCD中,CD=6,E为BC边上一点,且EC=2将△DEC沿DE折叠,点C落在点C'.若折叠后点A,C',E恰好在同一直线上,则AD的长为( )
A.8 B.9
C.
D.10
4.已知点是平行四边形
内一点(不含边界),设
.若
,则( )
A. B.
C. D.
5.如图,O是▱ABCD对角线的交点,,
,
,则
的周长是
A.17 B.13 C.12 D.10
6.已知是方程
的一个根,那么代数式
的值为( )
A.5 B.6 C.7 D.8
7.如图在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交BC于点D,若CD=2,AB=8,则△ABD的面积是( )
A.16 B.32 C.8 D.4
8.如图,在平面直角坐标系中,OABC的顶点A在x轴上,定点B的坐标为(8,4),若直线经过点D(2,0),且将平行四边形OABC分割成面积相等的两部分,则直线DE的表达式是( )
A.y=x-2 B.y=2x-4 C.y=x-1 D.y=3x-6
9.不等式5x﹣2>3(x+1)的最小整数解为( )
A.3 B.2 C.1 D.﹣2
10.如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,….照此规律,点P第100次跳动至点P100的坐标是( )
A.(﹣26,50) B.(﹣25,50)
C.(26,50) D.(25,50)
二、填空题(本大题共有6小题,每小题3分,共18分)
11.如图,正方形的定点与正方形
的对角线交点
重合,正方形
和正方形
的边长都是
,则图中重叠部分的面积是__________
.
12.已知直角三角形的两条边为5和12,则第三条边长为__________.
13.正比例函数图象经过,则这个正比例函数的解析式是_________.
14.将二次函数化成
的形式,则
__________.
15.如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是__.
16.某商品经过两次连续的降价,由原来的每件250元降为每件160元,则该商品平均每次降价的百分率为____________.
三、解下列各题(本大题共8小题,共72分)
17.(8分)列分式方程解应用题:今年植树节,某校师生到距学校20千米的公路旁植树,一班师生骑自行车先走,走了16千米后,二班师生乘汽车出发,结果同时到达.已知汽车的速度比自行车的速度每小时快60千米,求两种车的速度各是多少?
18.(8分)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE,
(1)求证:四边形AEBD是矩形;
(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.
19.(8分)为了响应“五水共治,建设美丽永康”的号召,某小区业委会随机调查了该小区20户家庭5月份的用水量,结果如下表:
5月份用水量(吨) | 5 | 10 | 11 | 13 | 15 | 20 |
户数 | 3 | 5 | 6 | 3 | 2 | 1 |
(1)计算这20户家庭5月份的平均用水量;
(2)若该小区有800户家庭,估计该小区5月份用水量多少吨?
20.(8分)某小区积极创建环保示范社区,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,已知温馨提示牌的单价为每个30元,垃圾箱的单价为每个90元,共需购买温馨提示牌和垃圾箱共100个.
(1)若规定温馨提示牌和垃圾箱的个数之比为1:4,求所需的购买费用;
(2)若该小区至多安放48个温馨提示牌,且费用不超过6300元,请列举所有购买方案,并说明理由.
21.(8分)某校八年级数学实践能力考试选择项目中,选择数据收集项目和数据分析项目的学生比较多。为了解学生数据收集和数据分析的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据:从选择数据收集和数据分析的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:
数据收集 | 10 | 9.5 | 9.5 | 10 | 8 | 9 | 9.5 | 9 | 7 | 10 | 4 | 5.5 | 10 | 7.9 | 9.5 | 10 |
数据分析 | 9.5 | 9 | 8.5 | 8.5 | 10 | 9.5 | 10 | 8 | 6 | 9.5 | 10 | 9.5 | 9 | 8.5 | 9.5 | 6 |
整理,描述数据:按如下分数段整理,描述这两组样本数据:
| 10 | ||||
数据收集 | 1 | 1 | 3 | 6 | 5 |
数据分析 |
|
|
|
|
|
(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格.)
分析数据:两组样本数据的平均数,中位数,众数如下表所示:
项目 | 平均数 | 中位数 | 众数 |
数据收集 | 8.75 | 9.5 | 10 |
数据分析 | 8.81 | 9.25 | 9.5 |
得出结论:
(1)如果全校有480人选择数据收集项目,达到优秀的人数约为________人;
(2)初二年级的井航和凯舟看到上面数据后,井航说:数据分析项目整体水平较高.凯舟说:数据收集项目整体水平较高.你同意________的看法,理由为_______________________.(至少从两个不同的角度说明推断的合理性)
22.(10分)在平面直角坐标系xOy中,对于两点A,B,给出如下定义:以线段AB为边的正方形称为点A,B的“确定正方形”.如图为点A,B 的“确定正方形”的示意图.
(1)如果点M的坐标为(0,1),点N的坐标为(3,1),那么点M,N的“确定正方形”的面积为___________;
(2)已知点O的坐标为(0,0),点C为直线上一动点,当点O,C的“确定正方形”的面积最小,且最小面积为2时,求b的值.
(3)已知点E在以边长为2的正方形的边上,且该正方形的边与两坐标轴平行,对角线交点为P(m,0),点F在直线上,若要使所有点E,F的“确定正方形”的面积都不小于2,直接写出m的取值范围.
23.(10分)计算:
(1);
(2)先化简,再求值,;其中,x
2,y
2.
24.(12分)先化简,再求值:,其中x=﹣1.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、A
3、D
4、D
5、C
6、C
7、C
8、A
9、A
10、C
二、填空题(本大题共有6小题,每小题3分,共18分)
11、
12、1或
13、
14、
15、4.1
16、20%
三、解下列各题(本大题共8小题,共72分)
17、汽车和自行车的速度分别是75千米/时、15千米/时.
18、解:(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,
∴四边形AEBD是平行四边形.
∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC.
∴∠ADB=90°.
∴平行四边形AEBD是矩形.
(2)当∠BAC=90°时,矩形AEBD是正方形.理由如下:
∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,∴AD=BD=CD.
∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.
19、(1)11吨;(2)8800吨.
20、(1)7800元;(2)购买方案为:温馨提示牌和垃圾箱个数分别为45,55;46,54;47,53;48,1.
21、(1)1;(2)凯舟,数据收集项目的中位数较大,众数也较大,因此数据收集项目的整体水平较高.
22、(1)9;(2)OC⊥直线于点C;①
;②
;(3)
23、(1);(2)2.
24、
2023-2024学年上海市静安区风华初级中学九年级数学第一学期期末调研试题含答案: 这是一份2023-2024学年上海市静安区风华初级中学九年级数学第一学期期末调研试题含答案,共7页。
2023-2024学年上海市静安区风华初级中学数学八上期末质量检测试题含答案: 这是一份2023-2024学年上海市静安区风华初级中学数学八上期末质量检测试题含答案,共7页。试卷主要包含了下列说法中,错误的是,以下关于直线的说法正确的是等内容,欢迎下载使用。
上海市静安区2022-2023学年数学七下期末监测试题含答案: 这是一份上海市静安区2022-2023学年数学七下期末监测试题含答案,共6页。试卷主要包含了下列命题中的假命题是,点A,化简的结果是等内容,欢迎下载使用。