山东省东营垦利区四校联考2022-2023学年数学七年级第二学期期末质量跟踪监视模拟试题含答案
展开这是一份山东省东营垦利区四校联考2022-2023学年数学七年级第二学期期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了化简的结果是,下列方程中是二项方程的是等内容,欢迎下载使用。
山东省东营垦利区四校联考2022-2023学年数学七年级第二学期期末质量跟踪监视模拟试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是
A.50(1+x2)=196 B.50+50(1+x2)=196
C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196
2.已知P1(﹣1,y1),P2(2,y2)是一次函数y=﹣x+1图象上的两个点,则y1,y2的大小关系是( )
A.y1=y2 B.y1<y2 C.y1>y2 D.不能确定
3.如图,已知一次函数y=kx+b(k,b为常数,且k≠0)的图象与x轴交于点A(3,0),若正比例函数y=mx(m为常数,且m≠0)的图象与一次函数的图象相交于点P,且点P的横坐标为1,则关于x的不等式(k-m)x+b<0的解集为( )
A. B. C. D.
4.化简(+2)的结果是( )
A.2+2 B.2+ C.4 D.3
5.如图,O是▱ABCD对角线的交点,,,,则的周长是
A.17 B.13 C.12 D.10
6.直角三角形的两条直角边长分别为a和b,斜边长为c,已知c=13,b=5,则a=( )
A.1 B.5 C.12 D.25
7.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程( )
A.=15 B.
C. D.
8.下列方程中是二项方程的是( )
A.; B.=0; C.; D.=1.
9.如图所示,将△ABC绕点A按逆时针旋转50°后,得到△ADC′,则∠ABD的度数是( )
A.30° B.45° C.65° D.75°
10.如图四边形ABCD是正方形,点E、F分别在线段BC、DC上,∠BAE=30°.若线段AE绕点A逆时针旋转后与线段AF重合,则旋转的角度是( )
A.30° B.45° C.60° D.90°
11.点关于x轴对称的点的坐标是
A. B. C. D.
12.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:
甲:8、7、9、8、8
乙:7、9、6、9、9
则下列说法中错误的是( )
A.甲、乙得分的平均数都是8
B.甲得分的众数是8,乙得分的众数是9
C.甲得分的中位数是9,乙得分的中位数是6
D.甲得分的方差比乙得分的方差小
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13.若点在一次函数的图像上,则代数式的值________。
14.分式的值为0,那么x的值为_____.
15.古语说:“春眠不觉晓”,每到初春时分,想必有不少人变得嗜睡,而且睡醒后精神不佳.我们可以在饮食方面进行防治,比如以下食物可防治春困:香椿、大蒜、韭菜、山药、麦片.春天即将来临时,某商人抓住商机,购进甲、乙、丙三种麦片,已知销售每袋甲种麦片的利润率为10%,每袋乙种麦片的利润率为20%,每袋丙种麦片的利润率为30%,当售出的甲、乙、丙三种麦片的袋数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙三种变片的袋数之比为3:2:1时,商人得到的总利润率为20%:那么当售出的甲、乙、丙三种麦片的袋数之比为2:3;4时,这个商人得到的总利润率为_____(用百分号表最终结果).
16.1955年,印度数学家卡普耶卡()研究了对四位自然数的一种变换:任给出四位数,用的四个数字由大到小重新排列成一个四位数,再减去它的反序数(即将的四个数字由小到大排列,规定反序后若左边数字有0,则将0去掉运算,比如0001,计算时按1计算),得出数,然后继续对重复上述变换,得数,…,如此进行下去,卡普耶卡发现,无论是多大的四位数,只要四个数字不全相同,最多进行次上述变换,就会出现变换前后相同的四位数,这个数称为变换的核.则四位数9631的变换的核为______.
17.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,则k=_______.
三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18.(5分)如图,平行四边形中,,点、分别在、的延长线上,,,垂足为点,.
(1)求证:是中点;
(2)求的长.
19.(5分)如图,以矩形的顶点为坐标原点,所在直线为轴,所在直线为轴,建立平面直角坐标系,已知,,将矩形绕点逆时针方向放置得到矩形.
(1)当点恰好落在轴上时,如图1,求点的坐标.
(2)连结,当点恰好落在对角线上时,如图2,连结,.
①求证:.
②求点的坐标.
(3)在旋转过程中,点是直线与直线的交点,点是直线与直线的交点,若,请直接写出点的坐标.
20.(8分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=1.
(1)求证:方程有两个不相等的实数根;
(2)若方程有一个根是5,求k的值.
21.(10分)如图,在中,,,为边上的高,过点作,过点作,与交于点,与交于点,连结.
(1)求证:四边形是矩形;
(2)求四边形的周长.
22.(10分)每年5月的第二个星期日即为母亲节,“父母恩深重,恩怜无歇时”,许多市民喜欢在母亲节为母亲送鲜花,感恩母亲,祝福母亲. 节日前夕,某花店采购了一批鲜花礼盒,成本价为30元每件,分析上一年母亲节的鲜花礼盒销售情况,得到了如下数据,同时发现每天的销售量(件)是销售单价(元/件)的一次函数.
销售单价 (元/件) | … | 30 | 40 | 50 | 60 | … |
每天销售量 (件) | … | 350 | 300 | 250 | 200 | … |
(1)求出与的函数关系;
(2)物价局要求,销售该鲜花礼盒获得的利润不得高于100﹪:
①当销售单价取何值时,该花店销售鲜花礼盒每天获得的利润为5000元?(利润=销售总价-成本价);
②试确定销售单价取何值时,花店销该鲜花礼盒每天获得的利润(元)最大?并求出花店销该鲜花礼盒每天获得的最大利润.
23.(12分)初三年级学习压力大,放学后在家自学时间较初一、初二长,为了解学生学习时间,该年级随机抽取25%的学生问卷调查,制成统计表和扇形统计图,请你根据图表中提供的信息回答下列问题:
学习时间(h) | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 |
人数 | 72 |
| 36 | 54 | 18 |
|
(1)初三年级共有学生_____人.
(2)在表格中的空格处填上相应的数字.
(3)表格中所提供的学生学习时间的中位数是_____,众数是_____.
参考答案
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1、C
2、C
3、B
4、A
5、C
6、C
7、D
8、C
9、C
10、A
11、A
12、C
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13、10
14、2
15、25%.
16、6174
17、-5
三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18、(1)证明见解析;(2).
19、(1)点;(2)①见解析;②点;(3)点,,,.
20、(1)证明见解析;(2)k=4或k=2.
21、(1)见详解;(2)
22、见解析
23、(1)1440;(2)见解析;(3)2.21、3.1.
相关试卷
这是一份山东省东营垦利区四校联考2023-2024学年九年级数学第一学期期末质量检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列事件中,是随机事件的是等内容,欢迎下载使用。
这是一份2023-2024学年山东省东营市四校联考九上数学期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,如图,已知∥∥,,那么的值是等内容,欢迎下载使用。
这是一份山东省东营垦利区四校联考2023-2024学年八上数学期末复习检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列说法中,不正确的是,下列各式不成立的是,下列各式中,是分式的有等内容,欢迎下载使用。