广东省广州市越秀区广东实验中学2022-2023学年七下数学期末质量检测模拟试题含答案
展开广东省广州市越秀区广东实验中学2022-2023学年七下数学期末质量检测模拟试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.无理数+1在两个整数之间,下列结论正确的是( )
A.2-3之间 B.3-4之间 C.4-5之间 D.5-6之间
2.已知:如图,在菱形中,,,落在轴正半轴上,点是边上的一点(不与端点,重合),过点作于点,若点,都在反比例函数图象上,则的值为( )
A. B. C. D.
3.下列各式中是二次根式的为( )
A. B. C. D.
4.我市某一周每天的最高气温统计如下(单位:℃):27,28,1,28,1,30,1.这组数据的众数与中位数分别是( ).
A.28,28 B.28,1 C.1,28 D.1,1
5.如图在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交BC于点D,若CD=2,AB=8,则△ABD的面积是( )
A.16 B.32 C.8 D.4
6.如果不等式组有解,那么m的取值范围是
A. B. C. D.
7.如图,在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD的度数为( )
A.70° B.60° C.50° D.80°
8.如果一个正多边形的一个外角为30°,那么这个正多边形的边数是( )
A.6 B.11 C.12 D.18
9.如图,双曲线与直线交于点M,N,并且点M坐标为(1,3)点N坐标为(-3,-1),根据图象信息可得关于x的不等式的解为( )
A. B.
C. D.
10.下列方程是关于x的一元二次方程的是
A. B.
C. D.
二、填空题(本大题共有6小题,每小题3分,共18分)
11.如图,已知正方形纸片ABCD,M,N分别是AD、BC的中点,把BC边向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠PBQ=_____度.
12.若一个三角形的三边长分别为5、12、13,则此三角形的面积为 .
13.如图,在直角坐标系中,已知点A(-3,-1),点B(-2,1),平移线段AB,使点A落在A1(0,1),点B落在点B1,则点B1的坐标为_______.
14.如图,△ABC是等腰直角三角形,∠A=90°,点P.Q分別是AB、AC上的动点,且满足BP=AQ,D是BC的中点,当点P运动到___时,四边形APDQ是正方形.
15.分解因式:= .
16.如图,正方形的边长为12,点、分别在、上,若,且,则______.
三、解下列各题(本大题共8小题,共72分)
17.(8分)在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质一一运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义.
结合上面经历的学习过程,现在来解决下面的问题:在函数中,当时,当时,.
求这个函数的表达式;
在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;
已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.
18.(8分)如图①,直线与双曲线相交于点、,与x轴相交于C点.
求点A、B的坐标及直线的解析式;
求的面积;
观察第一象限的图象,直接写出不等式的解集;
如图,在x轴上是否存在点P,使得的和最小?若存在,请说明理由并求出P点坐标.
19.(8分)为了庆祝新中国成立70周年,某校组织八年级全体学生参加“恰同学少年,忆峥嵘岁月”新中国成立70周年知识竞赛活动.将随机抽取的部分学生成绩进行整理后分成5组,50~60分()的小组称为“学童”组,60~70分()的小组称为“秀才”组,70~80分()的小组称为“举人”组,80~90分()的小组称为“进士”组,90~100分()的小组称为“翰林”组,并绘制了不完整的频数分布直方图如下,请结合提供的信息解答下列问题:
(1)若“翰林”组成绩的频率是12.5%,请补全频数分布直方图;
(2)在此次比赛中,抽取学生的成绩的中位数在 组;
(3)学校决定对成绩在70~100分()的学生进行奖励,若八年级共有336名学生,请通过计算说明,大约有多少名学生获奖?
20.(8分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.
(1)写出运动员甲测试成绩的众数和中位数;
(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)
21.(8分) “大美武汉,畅游江城”.某校数学兴趣小组就“最想去的武汉市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:
请根据图中提供的信息,解答下列问题:
(1)求被调查的学生总人数;
(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
(3)若该校共有1200名学生,请估计“最想去景点B“的学生人数.
22.(10分)在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.
(1)根据已知条件画出图形;
(2)求证:四边形AFCE是平行四边形.
23.(10分)中国新版高铁“复兴号”率先在北京南站和上海虹桥站双向首发“复兴号”高铁从某车站出发,在行驶过程中速度(千米/分钟)与时间(分钟)的函数关系如图所示.
(1)当时,求关于工的函数表达式,
(2)求点的坐标.
(3)求高铁在时间段行驶的路程.
24.(12分)如图,在中,点为边的中点,点在内,平分点在上,.
(1)求证:四边形是平行四边形;
(2)线段之间具有怎样的数量关系?证明你所得到的结论.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、A
4、D
5、C
6、C
7、A
8、C
9、D
10、D
二、填空题(本大题共有6小题,每小题3分,共18分)
11、1
12、30
13、(1,3)
14、AB的中点.
15、.
16、
三、解下列各题(本大题共8小题,共72分)
17、; 详见解析;或
18、(1);(2);(3);(4)
19、(1)详见解析;(2)70~80或“举人”;(3)231.
20、(1)众数是7,中位数是7;(2)乙,理由见解析
21、(1)40;(2)详见解析,72°;(3)420人.
22、(1)见解析;(2)见解析
23、(1);(2)点的坐标为;(3)高铁在时段共行驶了千米.
24、(1)见详解;(2),证明见详解.
2023-2024学年广东省广州市越秀区广东实验中学数学九上期末检测模拟试题含答案: 这是一份2023-2024学年广东省广州市越秀区广东实验中学数学九上期末检测模拟试题含答案,共8页。试卷主要包含了如图,的直径,弦于,如图,,则下列比例式错误的是,国家规定存款利息的纳税办法是等内容,欢迎下载使用。
广东省广州市越秀区2023-2024学年数学八上期末教学质量检测模拟试题含答案: 这是一份广东省广州市越秀区2023-2024学年数学八上期末教学质量检测模拟试题含答案,共7页。试卷主要包含了估计的运算结果应在,计算,得等内容,欢迎下载使用。
广东省广州市东环中学2022-2023学年七下数学期末质量检测模拟试题含答案: 这是一份广东省广州市东环中学2022-2023学年七下数学期末质量检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。