广东省金平区六校联考2022-2023学年数学七下期末调研试题含答案
展开广东省金平区六校联考2022-2023学年数学七下期末调研试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.如图,在菱形ABCD中,∠A=60°,E,F分别是AB,AD的中点,DE,BF相交于点G,连接BD,CG,有下列结论:①∠BGD=120° ;②BG+DG=CG;③△BDF≌△CGB;④.其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
2.下列二次根式中属于最简二次根式的是( )
A. B. C. D.
3.若,则化简后为( )
A. B. C. D.
4.下列图形中,既是轴对称图形又是中心对称图形的是( )
A.等边三角形 B.菱形
C.等腰直角三角形 D.平行四边形
5.给出下列化简①()2=2:②2;③12;④,其中正确的是( )
A.①②③④ B.①②③ C.①② D.③④
6.∠A的余角是70°,则∠A的补角是( )
A.20° B.70° C.110° D.160°
7.要从甲、乙、丙三名学生中选出一名学生参加数学竞赛,对这三名学生进行了10次数学测试,经过数据分析,3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是( )
A.甲 B.乙 C.丙 D.无法确定
8.如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.
正确的有( )
A.1个 B.2个 C.3个 D.4个
9.已知△ABC的边长分别为5,7,8,则△ABC的面积是( )
A.20 B.10 C.10 D.28
10.如图,长方形ABCD中,BE、CE分别平分∠ABC和∠DCB,点E在AD上,①△ABE≌△DCE;②△ABE和△DCE都是等腰直角三角形;③AE=DE;④△BCE是等边三角形,以上结论正确的有( )
A.1个 B.2个 C.4个 D.3个
11.下列各组数据中,能做为直角三角形三边长的是( )。
A.1、2、3 B.3、5、7 C.32,42,52 D.5、12、13
12.如图,四边形ABCD是矩形,连接BD,,延长BC到E使CE=BD,连接AE,则的度数为( )
A. B. C. D.
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13.如图,在中,,点、、分别为、、的中点,若,则_________.
14.写出一个比2大比3小的无理数(用含根号的式子表示)_____.
15.如图,某小区有一块直角三角形绿地,量得直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一条直角边的直角三角形,则扩充的方案共有_____种.
16.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上,若四边形EGFH是菱形,则AE的长是_________________。
17.在平面直角坐标系中,已知点,直线与线段有交点,则的取值范围为__________.
三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18.(5分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).
(1)请按下列要求画图:
①将△ABC先向右平移4个单位长度、再向上平移1个单位长度,得到△A1B1C1,画出△A1B1C1;
②△A1B1C1与△ABC关于原点O成中心对称,画出△A1B1C1.
(1)在(1)中所得的△A1B1C1和△A1B1C1关于点M成中心对称,请直接写出对称中心M点的坐标.
19.(5分)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
(发现证明)小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
(类比引申)如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足 关系时,仍有EF=BE+FD.
(探究应用)如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)
20.(8分)在ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC.
(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.
①求证:BE=BF;
②请判断△AGC的形状,并说明理由.
(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG,判断△AGC的形状.(直接写出结论不必证明)
21.(10分)已知,正方形ABCD中,,绕点A顺时针旋转,它的两边长分别交CB、DC或它们的延长线于点MN,于点H.
如图,当点A旋转到时,请你直接写出AH与AB的数量关系;
如图,当绕点A旋转到时,中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明.
22.(10分)端午节假期,某商场开展促销活动,活动规定:若购买不超过100元的商品,则按全额交费;若购买超过100元的商品,则超过100元的部分按8折交费.设商品全额为x元,交费为y元.
(1)写出y与x之间的函数关系式.
(2)某顾客在-一次消费中,向售货员交纳了300元,那么在这次消费中,该顾客购买的商品全额为多少元?
23.(12分)如图,在平面直角坐标系中,直线l1:y=﹣x+2向下平移1个单位后,得到直线l2,l2交x轴于点A,点P是直线l1上一动点,过点P作PQ∥y轴交l2于点Q
(1)求出点A的坐标;
(2)连接AP,当△APQ为以PQ为底边的等腰三角形时,求点P和点Q的坐标;
(3)点B为OA的中点,连接OQ、BQ,若点P在y轴的左侧,M为直线y=﹣1上一动点,当△PQM与△BOQ全等时,求点M的坐标.
参考答案
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1、C
2、D
3、A
4、B
5、C
6、D
7、C
8、C
9、C
10、D
11、D
12、A
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13、1
14、
15、1
16、
17、
三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18、解:(1)①△A1B1C1如图所示;
②△A1B1C1如图所示.
(1)连接B1B1,C1C1,得到对称中心M的坐标为(1,1).
19、
20、(1)①证明见解析;②△AGC是等腰直角三角形.证明见解析;(2)△AGC是等边三角形.
21、;(2)数量关系还成立.证明见解析.
22、(1);(2)该顾客购买的商品全额为350元.
23、(1)A(2,0);(2)P(3,),Q(3,﹣);(3)M(﹣1,﹣1)或(﹣1,8)
广东省金平区六校联考2023-2024学年数学九上期末学业质量监测模拟试题含答案: 这是一份广东省金平区六校联考2023-2024学年数学九上期末学业质量监测模拟试题含答案,共7页。试卷主要包含了不等式组的解集在数轴上表示为,如图,中,,若,,则边的长是等内容,欢迎下载使用。
2023-2024学年广东省金平区六校联考九年级数学第一学期期末调研模拟试题含答案: 这是一份2023-2024学年广东省金平区六校联考九年级数学第一学期期末调研模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,模型结论等内容,欢迎下载使用。
浙江省杭州滨江区六校联考2022-2023学年七下数学期末调研试题含答案: 这是一份浙江省杭州滨江区六校联考2022-2023学年七下数学期末调研试题含答案,共7页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。