江苏省无锡外国语学校2022-2023学年数学七下期末统考试题含答案
展开这是一份江苏省无锡外国语学校2022-2023学年数学七下期末统考试题含答案,共8页。试卷主要包含了答题时请按要求用笔,若点A等内容,欢迎下载使用。
江苏省无锡外国语学校2022-2023学年数学七下期末统考试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(2016山西省)宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是( )
A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH
2.已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是( )
A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形
3.从一个十边形的某个顶点出发,分别连接这个顶点与其余各顶点,可以把这个十边形分割成的三角形的个数为( )
A. B. C. D.
4.如图,平行四边形ABCD的周长是32cm,△ABC的周长是26cm,E、F分别是边AB、BC的中点,则EF的长为( )
A.8cm B.6cm C.5cm D.4cm
5.下列各式属于最简二次根式的有( )
A. B. C. D.
6.已知□ABCD,根据图中尺规作图的痕迹,判断下列结论中不一定成立的是( )
A.∠DAE=∠BAE B.∠DEA= ∠DAB C.DE=BE D.BC=DE
7.若点A(2,4)在函数的图象上,则下列各点在此函数图象上的是( ).
A.(0,) B.(,0) C.(8,20) D.(,)
8.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(﹣2,﹣2),“马”位于点(1,﹣2),则“兵”位于点( )
A.(﹣1,1) B.(﹣4,1) C.(﹣2,﹣1) D.(1,﹣2)
9.已知矩形ABCD如图,AB=3,BC=4,AE平分∠BAD交BC于点E,点F、G分别为AD、AE的中点,则FG=( )
A. B. C.2 D.
10.为了解某小区居民的日用电情况,居住在该小区的一名同学随机抽查了15户居民的日用电量,结果如下表:
日用电量 (单位:度) | 4 | 5 | 6 | 7 | 8 |
户数 | 2 | 5 | 4 | 3 | 1 |
则关于这15户家庭的日用电量,下列说法错误的是( )
A.众数是5度 B.平均数6度
C.极差(最大值-最小值)是4度 D.中位数是6度
11.用配方法解一元二次方程x2-8x+2=0,此方程可化为的正确形式是( ).
A.(x-4)2=14 B.(x-4)2=18 C.(x+4)2=14 D.(x+4)2=18
12.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是( )
A.4 B.6 C.8 D.10
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13. “m2是非负数”,用不等式表示为___________.
14.若一组数据的平均数为17,方差为2,则另一组数据的平均数和方差分别为( )
A.17,2 B.18,2 C.17,3 D.18,3
15.如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3).若直线y = 2x与线段AB有公共点,则n的取值范围是____________.
16.如果有意义,那么x的取值范围是_____.
17.已知关于函数,若它是一次函数,则______.
三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18.(5分)如图,在中,是边上的中线,的垂直平分线分别交于点,连接.
(1)求证:点在的垂直平分线上;
(2)若,请直接写出的度数.
19.(5分)阅读材料:在实数范围内,当且时 ,我们由非负数的性质知道,所以, 即:,当且仅当=时,等号成立,这就是数学上有名的“均值不等式”,若与的积为定值. 则有最小值:请问: 若 , 则当取何值时,代数式取最小值? 最小值是多少?
20.(8分) “中国汉字听写大会”是由中央电视台和国家语言文字工作委员会联合主办的节日,希望通过节目的播出,能吸引更多的人关注对汉字文化的学习智慧学校开展了一次全校性的:“汉字听写”比赛,每位参赛学生听写个汉字.比赛结束后随机抽取部分学生的听写结果,按听写正确的汉字个数绘制成了以下不完整的统计图.
根据图表信息解答下列问题:
(1)本次共随机抽取了 名学生进行调查,听写正确的汉字个数在 范围内的人数最多,补全频数分布直方图;
(2)各组的组中值如下表所示.若用各组的组中值代表各组每位学生听写正确的汉字个数,求被调查学生听写正确的汉字个数的平均数;
听写正确的汉字个数 | ||||
组中值 |
21.(10分)阅读材料,解答问题:
(1)中国古代数学著作《周髀算经》有着这样的记载:“勾广三,股修四,经隅五.”这句话的意思是:“如果直角三角形两直角边为3和4时,那么斜边的长为1.”上述记载说明:在中,如果,,,,那么三者之间的数量关系是: .
(2)对于(1)中这个数量关系,我们给出下面的证明.如图①,它是由四个全等的直角三角形围成的一个大正方形,中空的部分是一个小正方形.结合图①,将下面的证明过程补充完整:
∵,
(用含的式子表示)
又∵ .
∴
∴
∴ .
(3)如图②,把矩形折叠,使点与点重合,点落在点处,折痕为.如果,求的长.
22.(10分)知识再现:
如果,,则线段的中点坐标为;对于两个一次函数和,若两个一次函数图象平行,则且;若两个一次函数图象垂直,则.
提醒:在下面这个相关问题中如果需要,你可以直接利用以上知识.
在平面直角坐标系中,已知点,.
(1)如图1,把直线向右平移使它经过点,如果平移后的直线交轴于点,交x轴于点,请确定直线的解析式.
(2)如图2,连接,求的长.
(3)已知点是直线上一个动点,以为对角线的四边形是平行四边形,当取最小值时,请在图3中画出满足条件的,并直接写出此时点坐标.
23.(12分)如图,正比例函数y1=kx与-次函数y2=mx+n的图象交于点A(3,4),一次函数y2的图象与x轴,y轴分别交于点B,点C,且0A=OC.
(1)求这两个函数的解析式;
(2)求直线AB与两坐标轴所围成的三角形的面积.
参考答案
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1、D
2、B
3、B
4、C
5、B
6、C
7、A
8、B
9、D
10、B
11、A
12、A
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13、≥1
14、B
15、
16、x>1
17、
三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18、(1)详见解析;(2)
19、x=2时,最小值是1.
20、(1)50; ;补全频数分布直方图见解析;(2)23
21、(1);(2);正方形ABCD的面积;四个全等直角三角形的面积正方形CFGH的面积;;(2)2.
22、(1);(2)5;(3)
23、 (1) ,;(2) .
相关试卷
这是一份2023-2024学年江苏省无锡市无锡外国语学校数学九上期末检测模拟试题含答案,共8页。试卷主要包含了在单词prbability等内容,欢迎下载使用。
这是一份江苏省无锡新区2022-2023学年七下数学期末统考模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列说法中错误的是,已知直线,则关于x的方程的解为等内容,欢迎下载使用。
这是一份江苏省无锡市无锡外国语学校2022-2023学年七下数学期末联考模拟试题含答案,共7页。试卷主要包含了已知三角形的周长是1等内容,欢迎下载使用。