江苏省扬州市江都区五校2022-2023学年数学七年级第二学期期末考试试题含答案
展开江苏省扬州市江都区五校2022-2023学年数学七年级第二学期期末考试试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.如图,▱ABCD中,对角线AC,BD相交于点O,OA=3,若要使平行四边形ABCD为矩形,则OB的长度为( )
A.4 B.3 C.2 D.1
2.下列几个二次根式 , ,,,中是最简二次根式的有( )
A.个 B.个 C.个 D.个
3.一次函数y=2x–6的图象不经过第( )象限.
A.一 B.二 C.三 D.四
4.如图,已知直线l1:y=3x+1和直线l2:y=mx+n交于点P(a,﹣8),则关于x的不等式3x+1<mx+n的解集为( )
A.x>﹣3 B.x<﹣3 C.x<﹣8 D.x>﹣8
5.下列各组数中能作为直角三角形的三边长的是( )
A.1,2,3 B.3,4,5 C.4,5,6 D.7,8,9
6.正十边形的每一个内角的度数为( )
A.120° B.135° C.140° D.144°
7.在圆的周长C=2πR中,常量与变量分别是( )
A.2是常量,C、π、R是变量 B.2π是常量,C,R是变量
C.C、2是常量,R是变量 D.2是常量,C、R是变量
8.每千克m元的糖果x千克与每千克n元的糖果y千克混合成杂拌糖,则这种杂拌糖每千克的价格为 ( )
A.元 B.元 C.元 D.元
9.下列说法正确的是( ).
A.的平方根是 B.是81的一个平方根
C.0.2是0.4的算术平方根 D.负数没有立方根
10.给出下列命题,其中假命题的个数是( )
四条边相等的四边形是正方形;
两组邻边分别相等的四边形是平行四边形;
有一个角是直角的平行四边形是矩形;
矩形、平行四边形都是轴对称图形.
A. B. C. D.
二、填空题(本大题共有6小题,每小题3分,共18分)
11.如图所示,已知AB= 6,点C,D在线段AB上,AC =DB = 1,P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G,当点P从点C运动到点D时,则点G移动路径的长是_________.
12.如果点A(1,m)在直线y=-2x+1上,那么m=___________.
13.若是整数,则最小的正整数n的值是_____________。
14.若,则的值为________.
15.某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.
类别 | A | B | C | D | E | F |
类型 | 足球 | 羽毛球 | 乒乓球 | 篮球 | 排球 | 其他 |
人数 |
| 10 | 4 |
| 6 | 2 |
那么,其中最喜欢足球的学生数占被调查总人数的百分比为______%.
16.如图,点P是直线y=3上的动点,连接PO并将PO绕P点旋转90°到PO′,当点O′刚好落在双曲线(x>0)上时,点P的横坐标所有可能值为_____.
三、解下列各题(本大题共8小题,共72分)
17.(8分)某汽车租凭公司要购买轿车和面包车共辆,其中轿车最少要购买辆,轿车每辆万元,购头面包车每辆万元,公司可投入的购车资金不超过万元.
(1)符合公司要求的购买方案有几种?请说明理由;
(2)如果每辆轿车日租金为元,每辆面包车日租金为元,假设新购买的这辆汽车每日都可以全部租出,公司希望辆汽车的日租金最高,那么应该选择以上的哪种购买方案?且日租金最高为多少元?
18.(8分)如图,正方形ABCD的边长为4,动点E从点A出发,以每秒2个单位的速度沿A→D→A运动,动点G从点A出发,以每秒1个单位的速度沿A→B运动,当有一个点到达终点时,另一点随之也停止运动.过点G作FG⊥AB交AC于点F.设运动时间为t(单位:秒).以FG为一直角边向右作等腰直角三角形FGH,△FGH与正方形ABCD重叠部分的面积为S.
(1)当t=1.5时,S=________;当t=3时,S=________.
(2)设DE=y1,AG=y2,在如图所示的网格坐标系中,画出y1与y2关于t的函数图象.并求当t为何值时,四边形DEGF是平行四边形?
19.(8分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若动点P从A点出发,以每秒2cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:
(1)BC= cm;
(2)当t为多少时,四边形PQCD成为平行四边形?
(3)当t为多少时,四边形PQCD为等腰梯形?
(4)是否存在t,使得△DQC是等腰三角形?若存在,请求出t的值;若不存在,说明理由.
20.(8分)如图,在正方形中,对角线上有一点,连结,作交于点.过点作直线的对称点,连接
求证:
求证:四边形为平行四边形;
若有可能成为菱形吗?如果可能,求此时长;如果不可能,请说明理由.
21.(8分)甲、乙两班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球,两个班选手的进球数统计如表,请根据表中数据解答下列问题
进球数/个 | 10 | 9 | 8 | 7 | 6 | 5 |
甲 | 1 | 1 | 1 | 4 | 0 | 3 |
乙 | 0 | 1 | 2 | 5 | 0 | 2 |
(1)分别写出甲、乙两班选手进球数的平均数、中位数与众数;
(2)如果要从这两个班中选出一个班级参加学校的投篮比赛,争取夺得总进球团体的第一名,你认为应该选择哪个班?如果要争取个人进球数进入学校前三名,你认为应该选择哪个班?
22.(10分)先化简,再求值:,其中x=.
23.(10分)A、B、C三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩
(单位:分)分别用了两种方式进行了统计,如表和图1:
竞选人 | A | B | C |
笔试 | 85 | 95 | 90 |
口试 |
| 80 | 85 |
(1)请将表和图1中的空缺部分补充完整.
(2)竞选的最后一个程序是由本系的200名学生进行投票,三位候选人的得票情况如图2(没有弃权票,每名学生只能推荐一个),则A在扇形统计图中所占的圆心角是 度.
(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:4:2的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.
24.(12分)已知:直线y=2x+6、直线y=﹣2x﹣4与y轴的交点分别为A点、B点.
(1)请直接写出点A、B的坐标;
(2)若两直线相交于点C,试求△ABC的面积.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、A
3、B
4、B
5、B
6、D
7、B
8、B
9、B
10、C
二、填空题(本大题共有6小题,每小题3分,共18分)
11、1
12、-1.
13、1
14、
15、1
16、,.
三、解下列各题(本大题共8小题,共72分)
17、(1)三种,理由见解析;(2)购买5辆轿车,5辆面包车时,日租金最高为1550元.
18、(1);;(2)当t=或t=4时,四边形DEGF是平行四边形.
19、(1)18cm(2)当t=秒时四边形PQCD为平行四边形(3)当t=时,四边形PQCD为等腰梯形(4)存在t,t的值为秒或4秒或秒
20、(1)详见解析;(2)详见解析;(3)
21、(1)甲班选手进球数的平均数为7,中位为7,众数为7;乙班选手进球数的平均数为7,中位为7,众数为7;(2)要争取夺取总进球团体第一名,应选乙班;要进入学校个人前3名,应选甲班.
22、,.
23、 (1)表格数据90,图见解析;(2)126° ;(3) B当选,理由见解析.
24、(1)点A的坐标为(0,6)、B的坐标(0,﹣4);(2)△ABC的面积为12.1.
2023-2024学年江苏省扬州市江都区五校联谊九上数学期末综合测试模拟试题含答案: 这是一份2023-2024学年江苏省扬州市江都区五校联谊九上数学期末综合测试模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,已知与各边相切于点,,则的半径,抛物线y=2,在下列命题中,正确的是等内容,欢迎下载使用。
江苏省扬州市江都区江都区实验初级中学2023-2024学年数学八上期末考试试题含答案: 这是一份江苏省扬州市江都区江都区实验初级中学2023-2024学年数学八上期末考试试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,16的平方根是,如图,不是轴对称图形的是等内容,欢迎下载使用。
2023-2024学年江苏省扬州市江都区五校八上数学期末检测模拟试题含答案: 这是一份2023-2024学年江苏省扬州市江都区五校八上数学期末检测模拟试题含答案,共7页。试卷主要包含了已知,那么的值为,在等腰三角形△ABC等内容,欢迎下载使用。