2024版新教材高考数学全程一轮总复习高考大题研究课十一概率与统计的综合问题课件
展开关键能力·题型突破题型一 离散型随机变量的均值与方差例 1 [2023·安徽皖江名校联考]国庆节期间,某大型服装团购会举办了一次“你消费我促销”活动,顾客消费满300元(含300元)可抽奖一次,抽奖方案有两种(顾客只能选择其中的一种).方案一:从装有5个形状、大小完全相同的小球(其中红球1个,黑球4个)的抽奖盒中,有放回地摸出3个球,每摸出1次红球,立减100元.方案二:从装有10个形状,大小完全相同的小球(其中红球2个,白球1个,黑球7个)的抽奖盒中,不放回地摸出3个球,中奖规则为:若摸出2个红球,1个白球,享受免单优惠;若摸出2个红球和1个黑球则打5折;若摸出1个红球,1个白球和1个黑球,则打7.5折;其余情况不打折.
(1)某顾客恰好消费300元,选择抽奖方案一,求他实付金额的分布列和期望;(2)若顾客消费500元,试从实付金额的期望值分析顾客选择何种抽奖方案更合理?
题后师说离散型随机变量的均值与方差的求解,一般分两步:一是定型,即先判断随机变量的分布是特殊类型,还是一般类型,如二项分布、超几何分布等属于特殊类型;二是定性,对于特殊类型的均值和方差可以直接代入相应公式求解,而对于一般类型的随机变量,应先求其分布列再代入相应公式计算,注意离散型随机变量的取值与概率的对应.
巩固训练1[2023·河北邢台模拟]全民国防教育日是每年9月的第三个星期六,它是国家设定的对全民进行大规模国防教育的主题活动日.目的是弘扬爱国主义精神,普及国防教育,使全民增强国防观念,掌握必要的国防知识和军事技能,自觉履行国防义务,关心、支持、参与国防建设.为更好推动本次活动开展,某市组织了国防知识竞赛.比赛规则:每单位一名选手参加,比赛进行n轮(n∈N*),每轮比赛选手从A组题或B组题中抽取一道回答.每选手必须先回答A组题,若答对则下一轮回答B组题,若答错回答A组题.答对A组一题得10分,否则得0分,答对B组一题得20分,否则得0分,n轮结束累加总分.已知某单位拟选派甲乙中一人参赛,且甲答对A组题概率为0.8,答对B组题概率为0.5,乙答对A组题概率为0.5,答对B组题概率为0.8,且每人答对每道题相互独立.问:(1)若比赛仅进行两轮,则安排甲乙谁参赛更合适?(2)若安排甲选手参赛,求第四轮甲恰好回答B组题的概率.
(2)设“甲在第i轮回答B组题”的事件为Ai,i=2,3,4.则事件A4发生包括“甲在第三轮回答A组题且回答正确”和“甲在第三轮回答B组题且回答正确”.∴P(A4)=(1-P(A3))·0.8+P(A3)×0.5=0.8-0.3P(A3),同理:P(A3)=0.8-0.3P(A2),而P(A2)=0.8,∴P(A3)=0.8-0.3×0.8=0.56,P(A4)=0.8-0.3×0.56=0.632,∴甲参赛且第四轮正好回答B组题概率为0.632.
(1)求a的值;(2)将频率分布直方图中的频率近似看作概率,用样本估计总体.①从产品B中随机抽取3件,求其中一等品件数X的分布列及数学期望;②在总投资额相同的情况下,若全部投资产品A或产品B,试分析投资哪种产品收益更大.
题后师说概率与统计图表的综合主要以频率分布直方图、扇形图、折线图为载体,考查样本的频率分布、样本特征数以及概率的计算,往往和实际问题相结合,要注意理解实际问题的意义,使之和相应的概率计算对应起来,只有这样才能有效地解决问题.
巩固训练2[2023·河北沧州模拟]2022年冬季奥林匹克运动会主办城市是北京,北京成为第一个举办过夏季奥林匹克运动会和冬季奥林匹克运动会以及亚洲运动会三项国际赛事的城市!为迎接冬奥会的到来,某地很多中小学开展了模拟冬奥会赛事的活动,为了深入了解学生在“自由式滑雪”和“单板滑雪”两项活动的参与情况,在该地随机选取了10所学校进行研究,得到如下数据:
题后师说求解概率与回归模型的综合问题时,一要正确运用回归模型有关的公式和数据计算,二要注意概率模型的应用,明确所求问题所属的事件类型是关键.
巩固训练3[2023·广东东莞模拟]《中共中央国务院关于全面推进乡村振兴加快农业农村现代化的意见》,这是21世纪以来第18个指导“三农”工作的中央一号文件.文件指出,民族要复兴,乡村必振兴.为助力乡村振兴,某电商平台为某地的农副特色产品开设直播带货专场.为了对该产品进行合理定价,用不同的单价在平台试销,得到如下数据:
(1)(ⅰ)根据以上数据,求y关于x的经验回归方程;(ⅱ)若该产品成本是7元/件,假设该产品全部卖出,预测把单价定为多少时,工厂获得最大利润.(2)为了解该产品的价格是否合理,在试销平台上购买了该产品的顾客中随机抽了400人,阅读“购买后的评价”得知:对价格满意的有300人,基本满意的有50人,不满意的有50人.为进一步了解顾客对该产品价格满意度形成的原因,在购买该产品的顾客中随机抽取4人进行电话回访,记抽取的4人中对价格满意的人数为随机变量X,求随机变量X的分布列和数学期望.(视频率为相应事件发生的概率)
题型四 概率与独立性检验的综合例 4 [2023·重庆八中模拟]2022年卡塔尔世界杯于11月20日开赛,某国家队为了考察甲球员对球队的贡献,现作如下数据统计:
(1)根据小概率值α=0.025的独立性检验,能否认为该球队胜利与甲球员参赛有关联?(2)根据以往的数据统计,甲球员能够胜任前锋、中场、后卫三个位置,且出场率分别为:0.1,0.5,0.4;在甲出任前锋、中场、后卫的条件下,球队输球的概率依次为:0.2,0.2,0.7,则;①当甲参加比赛时,求该球队某场比赛输球的概率;②当甲参加比赛时,在球队输了某场比赛的条件下,求甲球员担当中场的概率;③如果你是教练员,应用概率统计有关知识,该如何使用甲球员?
题后师说求解概率与独立性检验的综合问题时,一要根据公式计算准确,二要注意概率模型的应用,明确所求问题所属的事件类型是关键.
巩固训练4[2023·河北石家庄模拟]我国政府加大了对全民阅读的重视程度,推行全民阅读工作,全民阅读活动在全国各地蓬勃发展,活动规模不断扩大,内容不断充实,方式不断创新,影响日益扩大,使我国国民素质得到了大幅度提高.某高中为响应政府号召,在寒假中对本校高三800名学生(其中男生480名)按性别采用分层抽样的方法抽取200名学生进行调查,了解他们每天的阅读情况.
题型五 概率与函数、不等式、数列的综合例 5 [2023·辽宁大连模拟]某网络科技公司在年终总结大会上,为增添喜悦、和谐的气氛,设计了闯关游戏这一环节,闯关游戏必须闯过若干关口才能成功.其中第一关是答题,分别设置“文史常识题”“生活常识题”“影视艺术常识题”这3道题目,规定有两种答题方案:方案一:答题3道,至少有两道答对;方案二:在这3道题目中,随机选取2道,这2道都答对.方案一和方案二中只要完成一个,就能通过第一关.假设程序员甲和程序员乙答对这3道题中每一道题的概率都是p(p∈(0,1)),且这3道题是否答对相互之间没有影响.程序员甲选择了方案一,程序员乙选择了方案二.(1)求甲和乙各自通过第一关的概率;(2)设甲和乙中通过第一关的人数为ξ,是否存在唯一的p的值p0,使得E(ξ)=1?并说明理由.
题后师说在概率与统计的问题中,决策的工具是样本的数字或有关概率.决策方案的最佳选择是将概率最大(最小)或均值最大(最小)的方案作为最佳方案,这往往借助于函数、不等式或数列的有关性质去实现.
巩固训练5[2023·福建厦门模拟]某汽车公司最近研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程的测试.现对测试数据进行分析,得到如图所示的频率分布直方图:
1.[2022·新高考Ⅱ卷]在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:
(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表).(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率.(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.000 1).
2.[2021·新高考Ⅱ卷]一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,P(X=i)=pi(i=0,1,2,3).(1)已知p0=0.4,p1=0.3,p2=0.2,p3=0.1,求E(X);(2)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程:p0+p1x+p2x2+p3x3=x的一个最小正实根,求证:当E(X)≤1时,p=1,当E(X)>1时,p<1;(3)根据你的理解说明(2)问结论的实际含义.
2024版新教材高考数学全程一轮总复习高考大题研究课一利用导数研究不等式恒能成立问题课件: 这是一份2024版新教材高考数学全程一轮总复习高考大题研究课一利用导数研究不等式恒能成立问题课件,共24页。
2024版新教材高考数学全程一轮总复习高考大题研究课五数列的综合课件: 这是一份2024版新教材高考数学全程一轮总复习高考大题研究课五数列的综合课件,共28页。PPT课件主要包含了题后师说等内容,欢迎下载使用。
2024版新教材高考数学全程一轮总复习高考大题研究课十证明与探索问题课件: 这是一份2024版新教材高考数学全程一轮总复习高考大题研究课十证明与探索问题课件,共28页。