2020年湖北省襄阳市中考数学试卷-含答案
展开2020年湖北省襄阳市中考数学试卷
一、 选择题
1.绝对值是( )
A. B. 2 C. D.
2.如图,,直线分别交,于点E,F,平分,若,则的大小是( )
A. B. C. D.
3.下列运算一定正确的是( )
A. B. C. D.
4.下列说法正确的是( )
A. “买中奖率为奖券10张,中奖”是必然事件
B. “汽车累积行驶,从未出现故障”是不可能事件
C. 襄阳气象局预报说“明天的降水概率为”,意味着襄阳明天一定下雨
D. 若两组数据的平均数相同,则方差小的更稳定
5.如图所示的三视图表示的几何体是( )
A. B. C. D.
6.不等式组中两个不等式的解集在数轴上表示正确的是( )
A. B. C. D.
7.如图,中,,根据尺规作图的痕迹判断以下结论错误的是( )
A. B. C. D.
8.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马,大马各有多少匹,若设小马有x匹,大马有y匹,则下列方程组中正确的是( )
A. B. C. D.
9.已知四边形是平行四边形,,相交于点O,下列结论错误的是( )
A. ,
B. 当时,四边形是菱形
C. 当时,四边形是矩形
D. 当且时,四边形是正方形
10.二次函数的图象如图所示,下列结论:①;②;③;④当时,y随x的增大而减小,其中正确的有( )
A. 4个 B. 3个 C. 2个 D. 1个
二、填空题:本大题共6个小题,把答案填在答题卡的相应位置上
11.函数中,自变量的取值范围是_____.
12.如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=_______.
13.《易经》是中国传统文化的精髓.如图是易经的一种卦图,图中每一卦由三根线组成(线形为或),如正北方向的卦为.从图中三根线组成的卦中任取一卦,这一卦中恰有2根和1根的概率为______.
14.汽车刹车后行驶的距离s与行驶时间t(秒)的函数关系是s=15t﹣6t2,汽车从刹车到停下来所用时间是_______秒.
15.在⊙O中,若弦垂直平分半径,则弦所对的圆周角等于_________°.
16.如图,矩形中,E为边上一点,将沿折叠,使点A的对应点F恰好落在边上,连接交于点N,连接.若,,则矩形的面积为________.
三、解答题:本大题共9个小题,解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内
17.先化简,再求值:,其中.
18.襄阳东站的建成运营标志者我市正式进入高铁时代,郑万高速铁路襄阳至万州段的建设也正在推进中.如图,工程队拟沿方向开山修路,为加快施工进度,需在小山的另一边点E处同时施工,要使A,C,E三点在一条直线上,工程队从上的一点B取,米,.那么点E与点D间的距离是多少米?(参考数据:,,)
19.在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进后,现在每天用水量是原来每天用水量的,这样120吨水可多用3天,求现在每天用水量是多少吨?
20.3月14日是国际数学日,“数学是打开科学大门的钥匙.”为进一步提高学生学习数学的兴趣,某校开展了一次数学趣味知识竞賽(竞赛成绩为百分制),并随机抽取了50名学生的竞赛成绩(本次竞赛没有满分),经过整理数据得到以下信息:
信息一:50名学生竞赛成绩频数分布直方图如图所示,从左到右依次为第一组到第五组(每组数据含前端点值,不含后端点值).
信息二:第三组的成绩(单位:分)为74 71 73 74 79 76 77 76 76 73 72 75
根据信息解答下列问题:
(1)补全第二组频数分布直方图(直接在图中补全);
(2)第三组竞赛成绩的众数是_________分,抽取的50名学生竞赛成绩的中位数是_________分;
(3)若该校共有1500名学生参赛,请估计该校参赛学生成绩不低于80分的约为_________人.
21.如图,反比例函数和一次函数的图象都经过点和点.
(1)_________,_________;
(2)求一次函数的解析式,并直接写出时x的取值范围;
(3)若点P是反比例函数的图象上一点,过点P作轴,垂足为M,则的面积为_________.
22.如图,是⊙O的直径,E,C是上两点,且,连接,,过点C作交的延长线于点D.
(1)判定直线与⊙O位置关系,并说明理由;
(2)若,,求图中阴影部分的面积.
23.受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援.”某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.
(1)直接写出当和时,y与x之间的函数关系式;
(2)若经销商计划一次性购进甲,乙两种水果共100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲,乙两种水果则进量,才能使经销商付款总金额w(元)最少?
(3)若甲,乙两种水果的销售价格分別为40元/千克和36元/千克,经销商按(2)中甲,乙两种水果购进量的分配比例购进两种水果共a千克,且销售完a千克水果获得的利润不少于1650元,求a的最小值.
24.在中,,.点D在边上,且,交边于点F,连接.
(1)特例发现:如图1,当时,①求证:;②推断:_________.;
(2)探究证明:如图2,当时,请探究度数是否为定值,并说明理由;
(3)拓展运用:如图3,在(2)的条件下,当时,过点D作的垂线,交于点P,交于点K,若,求的长.
25.如图,直线交y轴于点A,交x轴于点C,抛物线经过点A,点C,且交x轴于另一点B.
(1)直接写出点A,点B,点C的坐标及抛物线的解析式;
(2)在直线上方的抛物线上有一点M,求四边形面积的最大值及此时点M的坐标;
(3)将线段绕x轴上的动点顺时针旋转90°得到线段,若线段与抛物线只有一个公共点,请结合函数图象,求m的取值范围.
2020年湖北省襄阳市中考数学试卷答案
1.B.2..3.C.4.D.5.A.6.A.7.D.8.C.9.B.10.B.
11..12.40°.13..14.1.25.15.120°或60°.16..17..
18.解:∵,
∴,
∴,即,解得(米),
答:点E与点D间的距离是358.4米.
19.设原来每天用水量为x吨,则现在每天用水量为吨,根据题意得,
-=3
解得,x=10,
经检验,x=10是原方程的根.
∴吨,
答:现在每天用水量是8吨.
20.(1)第二组人数为:50-4-12-20-4=10(人)
补全统计图如下:
(2)第三组竞赛成绩中76分出现次数最多,出现了3次,故众数为76分;
50个数据中,最中间的两个数据分别是第25个和26个数据,对应的分数为:77分和79分,它们的平均数为:(分),故中位数为78(分);
故答案为:76;78;
(3)1500×=720(人),
故答案为:720.
21.解:(1)把x=1,y=4代入得,
4=,
解得m=4
∴
当y=2时,2=
解得,n=2
(2)把A(1,4),B(2,2)分别代入得
解得
∴y2=-2x+6
当y1<y2时,从图象看得出:1
∴OM=a,PM=,
∴S△POM=
22.证明:(1)直线DC与⊙O相切.
理由如下:连接OC,如图,
∵
∴∠EAC=∠OAC
∵OA=OC,
∴∠ACO=∠OAC,
∴∠ACO=∠DAC,
∴OC∥AD,
∵CD⊥AE,
∴OC⊥CD,
∴DC是⊙O的切线;
(2)连接OC、OE、CB,过C作CH⊥AB于H,
∵CH⊥AB,CD⊥AE
∴∠ADC=∠AHC,
∵∠EAC=∠OAC,AC=AC
∴△ADC≌△AHC
∴CH=,AH=AD,
∵∠CAH+∠ACH=∠BCH+∠ACH=90°
∴∠CAH=∠BCH,
又∵∠CHA=∠BHC,
∴△CAH∽△BCH
∴
∴
∴AH=3或1(舍去1)
∴BH= 1
∴S△ACH=
在Rt△CHB中,BH=1,HC=
∴∠BCH=30°=∠CAB
∴∠COB=∠EOC=60°
∴S阴影=S梯形OCDE-S扇形OCE=S△ACD-S扇形OCE= S△ACH-S扇形OCE=-=-
23.(1)当时,设y=kx,
将(50,1500)代入得1500=50k,
解得k=30,
所以;
当时,设y=k1x+b,
将(50,1500)、(70,1980)分别代入得
,
解得:,
所以;
综上;
(2)甲进货x千克,则乙进货(100-x)千克
①40≤x≤50
w=30x+(100-x)×25
=5x+2500
∵k>0
∴当x=40时,w有最小值为2700;
②50<x≤60,
w=24x+300+(100-x)×25,
=﹣x+2800,
∵k<0,
∴当x=60时w有最小值为2740,
∵2700<2740,
∴当甲进40千克,乙进60千克时付款总金额最少;
(3)由题可设甲为 ,乙为;
当0≤≤50时,即0≤a≤125
则甲的进货价为30元/千克,
×(40-30)+×(36-25)≥1650,
∴a≥ >125,
与0≤a≤125矛盾,故舍去,
当>50时,即a>125,
则甲的进货价为24元/千克,
×(40-24)+×(36-25)≥1650,
∴a≥>125 ,
∴a的最小值为
答:a的最小值为,利润不低于1650元.
24.证明:(1)①
②推断:
理由如下:
(2)为定值,
理由如下:
由(1)得:
(3) ,
设 则
,
解得:
25.解:(1)对直线,当x=0时,y=2,当y=0时,x=4,
∴点A坐标是(0,2),点C的坐标是(4,0),
把点A、C两点的坐标代入抛物线的解析式,得:
,解得:,
∴抛物线的解析式为,
∵抛物线的对称轴是直线,C(4,0),
∴点B的坐标为(﹣2,0);
∴A(0,2),B(﹣2,0),C(4,0),抛物线的解析式是;
(2)过点M作ME⊥x轴于点E,交直线AC于点F,如图1所示.
设M(m,),则F(m,),
∴,
∴S四边形ABCM=S△ABC+S△AMC
=
,
∵0<m<4,
∴当m=2时,四边形面积最大,最大值为8,此时点M的坐标为(2,2);
(3)若m>0,当旋转后点落在抛物线上时,如图2,线段与抛物线只有一个公共点,
∵点的坐标是(m+2,m),
∴,解得:或(舍去);
当旋转后点落在抛物线上时,如图3,线段与抛物线只有一个公共点,
∵点的坐标是(m,m),
∴,解得:m=2或m=﹣4(舍去);
∴当m>0时,若线段与抛物线只有一个公共点,m的取值范围是:;
若m<0,当旋转后点落在抛物线上时,如图4,线段与抛物线只有一个公共点,
∵点的坐标是(m,m),
∴,解得:m=﹣4或m=2(舍去);
当旋转后点落在抛物线上时,如图5,线段与抛物线只有一个公共点,
∵点的坐标是(m+2,m),
∴,解得: 或(舍去);
∴当m<0时,若线段与抛物线只有一个公共点,m的取值范围是:;
综上,若线段与抛物线只有一个公共点,m的取值范围是:或.
湖北省襄阳市2022年中考数学试卷(含答案): 这是一份湖北省襄阳市2022年中考数学试卷(含答案),共15页。
2020年湖北省襄阳市中考数学试卷与答案: 这是一份2020年湖北省襄阳市中考数学试卷与答案,共9页。试卷主要包含了绝对值是,下列运算一定正确的是,下列说法正确的是,如图所示的三视图表示的几何体是等内容,欢迎下载使用。
2020年湖北省襄阳市中考数学试卷: 这是一份2020年湖北省襄阳市中考数学试卷,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。