高考数学二轮复习高考大题专项练05解析几何B 理数(含答案)
展开
这是一份高考数学二轮复习高考大题专项练05解析几何B 理数(含答案),共6页。试卷主要包含了已知椭圆C1,已知动圆C与圆E,已知抛物线C等内容,欢迎下载使用。
五 解析几何(B)1.(2018·上饶三模)已知椭圆C1:+y2=1(a>1)的离心率e=,左、右焦点分别为F1,F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M.(1)求点M的轨迹C2的方程;(2)当直线AB与椭圆C1相切,交C2于点A,B,当∠AOB=90°时,求AB的直线方程. 2.(2018·烟台模拟)已知动圆C与圆E:x2+(y-1)2=外切,并与直线y=-相切.(1)求动圆圆心C的轨迹Γ;(2)若从点P(m,-4)作曲线Γ的两条切线,切点分别为A,B,求证:直线AB恒过定点. 3.(2018·商丘二模)已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,过焦点F的直线交C于A(x1,y1),B(x2,y2)两点,y1y2=-4.(1)求抛物线方程;(2)点B在准线l上的投影为E,D是C上一点,且AD⊥EF,求△ABD面积的最小值及此时直线AD的方程. 4.(2018·河南许昌质检)在平面直角坐标系xOy中,动点M到点(-1,0)与点(1,0)的距离和为4.(1)求动点M的轨迹Γ的方程;(2)已知斜率为的直线l交Γ于不同的两点A,B,是否存在定点P,使得直线PA,PB的斜率的和恒等于0,若存在,请求出点P的坐标;若不存在,请说明理由. 1.解:(1)由e2===,得a=,c=1,故F1(-1,0),F2(1,0),依条件可知|MP|=|MF2|,所以点M的轨迹是以l1为准线,F2为焦点的抛物线,所以C2的方程为y2=4x.(2)显然当AB斜率不存在时,不符合条件.当AB斜率存在时,设AB:y=kx+m,由消y得(1+2k2)x2+4kmx+2m2-2=0,因为AB与C1相切,所以Δ=16k2m2-4(1+2k2)(2m2-2)=0,得m2=2k2+1>1,①又由消y得k2x2+(2km-4)x+m2=0,设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=,且有得k≠0,km<1,因为OA⊥OB,所以·=x1x2+y1y2=(1+k2)x1x2+km(x1+x2)+m2=()2+4·=0,得m=-4k,联立①,得k=±,故直线AB的方程为y=±(x-4).2.(1)解:由题意知,圆E的圆心E(0,1),半径为.设动圆圆心C(x,y),半径为r.因为圆C与直线y=-相切,所以d=r,即y+=r.①因为圆C与圆E外切,所以|CE|=+r,即=+r.②联立①②,消去r,可得x2=4y.所以C点的轨迹Γ是以E(0,1)为焦点,y=-1为准线的抛物线.(2)证明:由已知直线AB的斜率一定存在.不妨设直线AB的方程为y=kx+b.联立整理得x2-4kx-4b=0,其中Δ=16(k2+b)>0,设A(x1,y1),B(x2,y2),则x1+x2=4k,x1x2=-4b.①由抛物线的方程可得y=x2,所以y′=x.所以过A(x1,y1)的抛物线的切线方程为y-y1=x1(x-x1),又y1=,代入整理得y=x1x-.因为切线过P(m,-4),代入整理得-2mx1-16=0,同理可得-2mx2-16=0.所以x1,x2为方程x2-2mx-16=0的两个根,所以x1+x2=2m,x1x2=-16.②由①②可得x1x2=-4b=-16,x1+x2=4k=2m.所以b=4,k=,AB的方程为y=x+4.当x=0时,y=4,所以直线AB恒过定点(0,4).3.解:(1)依题意F(,0),当直线AB的斜率不存在时,y1y2=-p2=-4,p=2,当直线AB的斜率存在时,设AB:y=k(x-),由化简得y2-y-p2=0,由y1y2=-4得p2=4,p=2,所以抛物线方程为y2=4x.(2)设D(x0,y0),B(,t),则E(-1,t),又由y1y2=-4,可得A(,-),因为kEF=-,AD⊥EF,所以kAD=,故直线AD:y+=(x-),即2x-ty-4-=0,由化简得y2-2ty-8-=0,所以y1+y0=2t,y1y0=-8-.所以|AD|=|y1-y0|==,设点B到直线AD的距离为d,则d==,所以S△ABD=|AD|·d=≥16,当且仅当t4=16,即t=±2时取等号,当t=2时,AD:x-y-3=0,当t=-2时,AD:x+y-3=0.4.解:(1)设动点M的坐标为(x,y),因为动点M到点(-1,0)与点(1,0)的距离和为4,4>2,根据椭圆的定义,知所求的动点M的轨迹Γ是以点(-1,0)与点(1,0)为焦点的 椭圆.所以解得所以轨迹Γ的方程为+=1.(2)假设存在定点P(x0,y0),使得直线PA,PB的斜率的和为0.设A(x1,y1),B(x2,y2),直线PA,PB的斜率分别为k1,k2.斜率为的直线l的方程为y=x+m(m∈R),由得x2+mx+m2-3=0,所以Δ=m2-4(m2-3)=-3(m2-4)>0,所以m2<4,解得-2<m<2.又所以y1+y2=(x1+x2)+2m=m,因为k1+k2=+=0,所以(y1-y0)(x2-x0)+(y2-y0)(x1-x0)=0,y1x2+y2x1+2x0y0-x0(y1+y2)-y0(x1+x2)=0,所以(x1+m)x2+(x2+m)x1+2x0y0-x0×-y0(-m)=0.所以x1x2+m(x1+x2)+2x0y0+my0-x0=0,所以m(y0-x0)+2x0y0-3=0对于-2<m<2恒成立,所以解得或所以存在定点P,坐标为(1,)或(-1,-),使得直线PA,PB的斜率的和恒等于0.
相关试卷
这是一份高考数学二轮复习高考大题专项练06导数B 理数(含答案),共6页。试卷主要包含了已知函数f=ln -x,直线l,已知函数f=a等内容,欢迎下载使用。
这是一份高考数学二轮复习高考大题专项练05解析几何A 理数(含答案),共7页。试卷主要包含了给定椭圆C,已知椭圆C等内容,欢迎下载使用。
这是一份高考数学二轮复习高考大题专项练04统计概率B 理数(含答案),共4页。试卷主要包含了8