所属成套资源:【同步知识讲义】人教A版高中数学选修第三册 全册精讲精练讲义+质量检测卷
人教A版 (2019)选择性必修 第三册第六章 计数原理6.1 分类加法计数原理与分步乘法计数原理精品同步练习题
展开
这是一份人教A版 (2019)选择性必修 第三册第六章 计数原理6.1 分类加法计数原理与分步乘法计数原理精品同步练习题,文件包含同步讲义人教A版2019高中数学选修第三册61分类加法计数原理与分步乘法计数原理原卷版docx、同步讲义人教A版2019高中数学选修第三册61分类加法计数原理与分步乘法计数原理解析版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。
6.1 分类加法计数原理与分步乘法计数原理
课程标准
课标解读
熟练掌握两个计数原理,并能灵活应用两个计数原理解决数学与生活中的计数问题,理解两个计数原理的区别与联系,掌握分类与分步的计数原则及分类标准.
通过本节课的学习,要求理解与掌握两个计数原理的计数方法,能应用两个计数原理解决一些简单的实际问题.
知识点1 分类加法计数原理
基本形式:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.
一般形式:完成一件事有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn种不同的方法
注:应用分类加法计数原理应遵循的两原则
(1)根据题目特点恰当选择一个分类标准.
(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,且只能属于某一类即标准明确,不重不漏.
【即学即练1】某同学从4本不同的科普杂志,3本不同的文摘杂志,2本不同的娱乐新闻杂志中任选一本阅读,则不同的选法共有( )
A.24种 B.9种 C.3种 D.26种
【即学即练2】某校高三共有三个班,各班人数如下表:
男生人数
女生人数
总人数
高三(1)班
30
20
50
高三(2)班
30
30
60
高三(3)班
35
20
55
(1)从三个班中任选1名学生担任学生会主席,有多少种不同的选法?
(2)从高三(1)班、(2)班男生中或从高三(3)班女生中选1名学生担任学生会生活部部长,有多少种不同的选法?
知识点2 分步乘法计数原理
基本形式:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.
一般形式:完成一件事需要n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有N=m1× m2×…×mn种不同的方法
注:1、如何区分“完成一件事”是分类还是分步?
区分“完成一件事”是分类还是分步,关键看一步能否完成这件事,若能完成,则是分类,否则,是分步.
2、应用分步乘法计数原理解题的一般思路
【即学即练3】已知x∈{2,3,7},y∈{-31,-24,4},则(x,y)可表示不同的点的个数是( )
A.1 B.3 C.6 D.9
【即学即练4】已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M).问:
(1)P(a,b)可表示平面上多少个不同的点?
(2)P(a,b)可表示平面上多少个第二象限的点?
【即学即练5】现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,则不同选法的种数是( )
A.56 B.65
C. D.6×5×4×3×2
知识点3 分类加法计数原理和分步乘法计数原理的联系和区别
分类加法计数原理
分步乘法计数原理
相同点
回答的都是有关做一件事的不同方法种数的问题
不同点
针对的是“分类”问题
不同点
各种方法相互独立,用其中任何一种方法都可以做完这件事
各个步骤中的方法互相依存,只有每一个步骤都完成才算做完这件事
注:1、分类应满足:不重不漏(“不重”即各类之间没有交叉点,“不漏”即各类的并集是全集)
分步必须注意:步与步间的连续性
2、用两个计数原理解决计数问题时,最重要的是在开始计算之前要仔细分析两点:
一、要完成的“一件事”是什么;二、需要分类还是需要分步.
(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.
(2)分步要做到“步骤完整”,即完成了所有步骤,恰好完成任务.分类后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.
【即学即练6】现有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.
(1)从中任选一幅画布置房间,有几种不同的选法?
(2)从这些国画、油画、水彩画中各选一幅布置房间,有几种不同的选法?
(3)从这些画中选出两幅不同种类的画布置房间,有几种不同的选法?
【即学即练7】现有高二四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.
(1)选其中一人为负责人,有多少种不同的选法?
(2)每班选一名组长,有多少种不同的选法?
(3)推选二人作中心发言,这二人需来自不同的班级,有多少种不同的选法?
知识点4 解答计数应用问题的总体思路
根据完成事件所需的过程,对事件进行整体分类,确定可分为几大类,整体分类以后,再确定在每类中完成事件要分几个步骤,这些问题都弄清楚了,就可以根据两个基本原理解决问题了. 此外,还要掌握一些非常规计数方法,如:①枚举法:将各种情况一一列举出来,它适用于种数较少且计数对象不规律的情况;②转换法:转换问题的角度或转换成其他已知问题;③间接法:若用直接法比较复杂,难以计数,则可考虑利用正难则反的策略,先计算其反面情形,再用总数减去即得.
注:解决抽取(分配)问题的方法
(1)当涉及对象的数目不大时,一般选用列举法、树状图法、框图法或图表法.
(2)当涉及对象的数目很大时,一般有两种方法:①直接使用分类加法计数原理或分步乘法计数原理.一般地,若抽取是有顺序的,则按分步进行;若是按对象特征抽取的,则按分类进行.②间接法.去掉限制条件,计算所有的抽取方法数,然后减去所有不符合条件的抽取方法数即可.
【即学即练8】三个人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被踢回给甲,则不同的传递方式共有______种.
【即学即练9】现有5种不同颜色的染料,要对如图所示的四个不同区域进行涂色,要求有公共边的两个区域不能使用同一种颜色,则不同的涂色方法的种数是( )
A.120 B.140
C.240 D.260
考点一 分类加法计数原理
解题方略:
应用分类加法计数原理应注意如下问题
(1)明确题目中所指的“完成一件事”是什么事,完成这件事可以有哪些方法,怎样才算是完成这件事.
(2)无论哪类方案中的哪种方法都可以独立完成这件事,而不需要再用到其他的方法,即各类方法之间是互斥的,并列的,独立的.
【例1-1】某学校开设4门球类运动课程、5门田径类运动课程和2门水上运动课程供学生学习,某位学生任选1门课程学习,则不同的选法共有( )
A.40种 B.20种 C.15种 D.11种
变式1:在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,如表:
A大学
B大学
生物学
数学
化学
会计学
医学
信息技术学
二物理学
法学
工程学
如果这名同学只能选一个专业,那么他共有多少种选择?
【例1-2】设集合A={1,2,3,4},m,n∈A,则方程+=1表示焦点位于x轴上的椭圆有( )
A.6个 B.8个
C.12个 D.16个
变式1:设集合A={1,2,3,4},m,n∈A,则方程+=1表示焦点位于y轴上的椭圆有( )
A.6个 B.8个
C.12个 D.16个
变式2:设集合A={1,2,3,4,5},m,n∈A,则方程+=1表示焦点位于x轴上的椭圆有( )
A.8个 B.10个
C.12个 D.16个
【例1-3】如果x,y∈N,且1≤x≤3,x+y
相关试卷
这是一份人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理优秀练习,文件包含第1讲分类加法计数原理与分步乘法计数原理原卷版docx、第1讲分类加法计数原理与分步乘法计数原理解析版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
这是一份人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理同步达标检测题,共17页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份高中数学人教A版 (2019)选择性必修 第三册第六章 计数原理6.1 分类加法计数原理与分步乘法计数原理精品课堂检测,文件包含第01讲分类加法计数原理与分步乘法计数原理教师版-高二数学同步精品讲义人教A版选择性必修第三册docx、第01讲分类加法计数原理与分步乘法计数原理学生版-高二数学同步精品讲义人教A版选择性必修第三册docx等2份试卷配套教学资源,其中试卷共64页, 欢迎下载使用。