![【同步讲义】(人教A版2019)高中数学选修第三册:7.5 正态分布 (原卷版)第1页](http://www.enxinlong.com/img-preview/3/3/14740062/0-1692614620864/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【同步讲义】(人教A版2019)高中数学选修第三册:7.5 正态分布 (原卷版)第2页](http://www.enxinlong.com/img-preview/3/3/14740062/0-1692614620946/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【同步讲义】(人教A版2019)高中数学选修第三册:7.5 正态分布 (原卷版)第3页](http://www.enxinlong.com/img-preview/3/3/14740062/0-1692614620968/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【同步讲义】(人教A版2019)高中数学选修第三册:7.5 正态分布 (解析版)第1页](http://www.enxinlong.com/img-preview/3/3/14740062/1-1692614636527/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【同步讲义】(人教A版2019)高中数学选修第三册:7.5 正态分布 (解析版)第2页](http://www.enxinlong.com/img-preview/3/3/14740062/1-1692614636548/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【同步讲义】(人教A版2019)高中数学选修第三册:7.5 正态分布 (解析版)第3页](http://www.enxinlong.com/img-preview/3/3/14740062/1-1692614636580/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:【同步知识讲义】人教A版高中数学选修第三册 全册精讲精练讲义+质量检测卷
数学选择性必修 第三册7.5 正态分布优秀课后作业题
展开
这是一份数学选择性必修 第三册7.5 正态分布优秀课后作业题,文件包含同步讲义人教A版2019高中数学选修第三册75正态分布原卷版docx、同步讲义人教A版2019高中数学选修第三册75正态分布解析版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
7.5 正态分布
课程标准
课标解读
1. 通过误差模型初步了解服从正态分布
的随机变量的特点.
2.并能通过具体的实例,借助频率直方图的几何直观性,了解正态分布的特征,了解正态密度函数的性质.
3.了解正态分布的均值、方差及含义.
4.了解 原则,能通过具体的实例求会求指定区间的概率,以及解决简单的正态分布问题.
通过本节课的学习,要求在了解正态分布的含义基础上,能解决与正态分布相关的问题,根据正态密度曲线的对称性,增减性,求特定区间的概率,相应的参数及解决简单的正态分布的应用问题.
知识点1 正态曲线与正态分布
1.连续型随机变量
除了离散型随机变量外,还有大量问题中的随机变量不是离散型的,它们的取值往往充满某个区间甚至整个实轴,但取一点的概率为0,我们称这类随机变量为连续型随机变量.
2.正态的曲线的定义
我们称f(x)=,x∈R,其中μ∈R,σ>0为参数,为正态密度函数,称其图象为正态分布密度曲线,简称正态曲线.
3.正态分布的定义
若随机变量X的概率密度函数为f(x),则称随机变量X服从正态分布,记为X~N(μ,σ2).特别地,当μ=0,σ=1时,称随机变量X服从标准正态分布.
若X~N(μ,σ2),如图所示,X取值不超过x的概率P(X≤x)为图中区域A的面积,而P(a≤X≤b)为区域B的面积.
注:1、正态曲线f(x)=,x∈R中的参数μ,σ有何意义?
μ可取任意实数,表示平均水平的特征数,E(X)=μ;σ>0表示标准差,D(X)=σ2.一个正态密度函数由μ,σ唯一确定,π和e为常数,x为自变量,x∈R.
2、若随机变量X~N(μ,σ2),则X是离散型随机变量吗?
若X~N(μ,σ2),则X不是离散型随机变量,由正态分布的定义:P(a0,它的图象在x轴的上方.
2.曲线与x轴之间的面积为1.
3.曲线是单峰的,它关于直线x=μ对称.
4.曲线在x=μ处达到峰值.
5.当|x|无限增大时,曲线无限接近x轴.
6.当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图①.
7.当μ一定时,曲线的形状由σ确定,σ较小时曲线“瘦高”,表示随机变量X的分布比较集中;σ较大时,曲线“矮胖”,表示随机变量X的分布比较分散,如图②.
【即学即练1】已知随机变量服从正态分布,其正态曲线如图所示,则总体的均值μ= ,方差σ2= .
【解析】从给出的正态曲线可知,该正态曲线关于直线x=20对称,最大值是,所以μ=20,=,解得σ=,因此总体的均值μ=20,方差σ2=()2=2.
【即学即练2】【多选】一次教学质量检测中,甲、乙、丙三科考试成绩的正态分布密度曲线如图所示,下列说法中不正确的是( )
A.甲科总体的标准差最小
B.丙科总体的平均数最小
C.乙科总体的标准差及平均数都比甲小,比丙大
D.甲、乙、丙总体的平均数不相同
【解析】由题中图象可知三科总体的平均数(均值)相等,由正态分布密度曲线的性质,可知σ越大,正态曲线越“矮胖”,σ越小,正态曲线越“瘦高”,故三科总体的标准差从小到大依次为甲、乙、丙.故选BCD
【即学即练3】在某次大型考试中,某班同学的成绩服从正态分布N(80,52),现在已知该班同学中成绩在80~85分的有17人,该班成绩在90分以上的同学有多少人?
【解析】∵成绩服从正态分布N(80,52),
∴μ=80,σ=5,则μ-σ=75,μ+σ=85.
∴成绩在[75,85]内的同学占全班同学的68.27%,成绩在[80,85]内的同学占全班同学的34.135%.
设该班有x名同学,则x×34.135%=17,解得x≈50.
∵μ-2σ=80-10=70,μ+2σ=80+10=90,
∴成绩在[70,90]内的同学占全班同学的95.45%,成绩在90分以上的同学占全班同学的2.275%.
即有50×2.275%≈1(人),即成绩在90分以上的仅有1人.
知识点3 正态总体在三个特殊区间内取值的概率值及3σ原则
P(μ-σ≤X≤μ+σ)≈0.682 7;
P(μ-2σ≤X≤μ+2σ)≈0.954 5;
P(μ-3σ≤X≤μ+3σ)≈0.997 3.
尽管正态变量的取值范围是(-∞,+∞),但在一次试验中,X的取值几乎总是落在区间[μ-3σ,μ+3σ]内,而在此区间以外取值的概率大约只有0.002 7,通常认为这种情况在一次试验中几乎不可能发生.
在实际应用中,通常认为服从于正态分布N(μ,σ2)的随机变量X只取[μ-3σ,μ+3σ]中的值,这在统计学中称为3σ原则.
【即学即练4】已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )
(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ≤ξ≤μ+σ)≈68.27%,P(μ-2σ≤ξ≤μ+2σ)≈95.45%)
A.4.56% B.13.59%
C.27.18% D.31.74%
【解析】P(3
相关试卷
这是一份【同步讲义】(人教A版2019)高中数学选修第三册:7.4.2 超几何分布 讲义,文件包含同步讲义人教A版2019高中数学选修第三册742超几何分布原卷版docx、同步讲义人教A版2019高中数学选修第三册742超几何分布解析版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。
这是一份【同步讲义】(人教A版2019)高中数学选修第三册:7.4.1 二项分布 讲义,文件包含同步讲义人教A版2019高中数学选修第三册741二项分布原卷版docx、同步讲义人教A版2019高中数学选修第三册741二项分布解析版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。
这是一份【同步讲义】(人教A版2019)高中数学选修第三册:7.1.2 全概率公式 讲义,文件包含同步讲义人教A版2019高中数学选修第三册712全概率公式原卷版docx、同步讲义人教A版2019高中数学选修第三册712全概率公式解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
![文档详情页底部广告位](http://www.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)