所属成套资源:【同步知识讲义】人教版数学九年级上册-全册精讲精练讲义(原卷版+解析版)
- 【重难点讲义】人教版数学九年级上册-知识点【22.1.1 二次函数y=ax²(a≠0)、y=ax²+c(a≠0)的图象及性质】 讲义 试卷 12 次下载
- 【重难点讲义】人教版数学九年级上册-知识点【22.1.2 二次函数y=a(x-h)²(a≠0)、y=a(x-h)²+k(a≠0)的图象及性质】 讲义 试卷 12 次下载
- 【重难点讲义】人教版数学九年级上册-基础练【22.1 二次函数的图像和性质】 讲义 试卷 14 次下载
- 【重难点讲义】人教版数学九年级上册-提高练【22.1 二次函数的图像和性质】 讲义 试卷 11 次下载
- 【重难点讲义】人教版数学九年级上册-知识点【22.2 二次函数与一元二次方程】 讲义 试卷 14 次下载
数学九年级上册22.1.1 二次函数精品随堂练习题
展开
这是一份数学九年级上册22.1.1 二次函数精品随堂练习题,文件包含重难点讲义2213二次函数yax²+bx+ca≠0的图像和性质原卷版docx、重难点讲义2213二次函数yax²+bx+ca≠0的图像和性质解析版docx等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
2022-2023学年九年级数学上册考点必刷练精编讲义(人教版)第22章《二次函数》22.1 二次函数的图像和性质22.1.3二次函数y=ax²+bx+c(a≠0)的图像和性质知识点01:数与之间的相互关系1.顶点式化成一般式
从函数解析式我们可以直接得到抛物线的顶点(h,k),所以我们称为顶点式,将顶点式去括号,合并同类项就可化成一般式.2.一般式化成顶点式 .对照,可知,.∴ 抛物线的对称轴是直线,顶点坐标是.知识要点1.抛物线的对称轴是直线,顶点坐标是,可以当作公式加以记忆和运用.2.求抛物线的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.
知识点02:二次函数的图象的画法1.一般方法:列表、描点、连线;2.简易画法:五点定形法. 其步骤为: (1)先根据函数解析式,求出顶点坐标和对称轴,在直角坐标系中描出顶点M,并用虚线画出对称轴. (2)求抛物线与坐标轴的交点,当抛物线与x轴有两个交点时,描出这两个交点A、B及抛物线与y轴的交点C,再找到点C关于对称轴的对称点D,将A、B、C、D及M这五个点按从左到右的顺序用平滑曲线连结起来.知识要点当抛物线与x轴只有一个交点或无交点时,描出抛物线与y轴的交点C及对称点D,由C、M、D三点可粗略地画出二次函数图象的草图;如果需要画出比较精确的图象,可再描出一对对称点A、B,然后顺次用平滑曲线连结五点,画出二次函数的图象,知识点03二次函数的图象与性质1.二次函数图象与性质 函数二次函数(a、b、c为常数,a≠0)图象开口方向向上向下对称轴直线直线顶点坐标增减性在对称轴的左侧,即当时,y随x的增大而减小;在对称轴的右侧,即当时,y随x的增大而增大.简记:左减右增在对称轴的左侧,即当时,y随x的增大而增大;在对称轴的右侧,即当时,y随x的增大而减小.简记:左增右减最大(小)值抛物线有最低点,当时,y有最小值,抛物线有最高点,当时,y有最大值, 2.二次函数图象的特征与a、b、c及b2-4ac的符号之间的关系 项目字母字母的符号图象的特征aa>0开口向上a<0开口向下bab>0(a,b同号)对称轴在y轴左侧ab<0(a,b异号)对称轴在y轴右侧cc=0图象过原点c>0与y轴正半轴相交c<0与y轴负半轴相交b2-4acb2-4ac=0与x轴有唯一交点b2-4ac>0与x轴有两个交点b2-4ac<0与x轴没有交点 知识点04:求二次函数的最大(小)值的方法如果自变量的取值范围是全体实数,那么函数在顶点处取得最大(或最小)值,即当时,.知识要点如果自变量的取值范围是x1≤x≤x2,那么首先要看是否在自变量的取值范围x1≤x≤x2内,若在此范围内,则当时,,若不在此范围内,则需要考虑函数在x1≤x≤x2范围内的增减性,如果在此范围内,y随x的增大而增大,则当x=x2时,;当x=x1时,,如果在此范围内,y随x的增大而减小,则当x=x1时,;当x=x2时,,如果在此范围内,y值有增有减,则需考察x=x1,x=x2,时y值的情况.知识点05:用待定系数法求二次函数解析式1.二次函数解析式常见有以下几种形式 : (1)一般式:(a,b,c为常数,a≠0); (2)顶点式:(a,h,k为常数,a≠0); (3)交点式:(,为抛物线与x轴交点的横坐标,a≠0).2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如或,或,其中a≠0; 第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组); 第三步,解:解此方程或方程组,求待定系数; 第四步,还原:将求出的待定系数还原到解析式中.知识要点在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为;③当已知抛物线与x轴的两个交点(x1,0),(x2,0)时,可设函数的解析式为.
相关试卷
这是一份初中数学人教版九年级上册22.1.1 二次函数优秀复习练习题,文件包含必刷知识点2212二次函数yax-h²a≠0yax-h²+ka≠0的图象及性质原卷版docx、必刷知识点2212二次函数yax-h²a≠0yax-h²+ka≠0的图象及性质解析版docx等2份试卷配套教学资源,其中试卷共4页, 欢迎下载使用。
这是一份初中数学人教版九年级上册第二十二章 二次函数22.1 二次函数的图象和性质22.1.1 二次函数精品课后复习题,文件包含必刷知识点2211二次函数yax²a≠0yax²+ca≠0的图象及性质原卷版docx、必刷知识点2211二次函数yax²a≠0yax²+ca≠0的图象及性质解析版docx等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。
这是一份人教版九年级上册22.1.1 二次函数精品课堂检测,文件包含重难点讲义人教版数学九年级上册-提高练221二次函数的图像和性质原卷版docx、重难点讲义人教版数学九年级上册-提高练221二次函数的图像和性质解析版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。