初中数学人教版八年级上册12.2 三角形全等的判定优秀随堂练习题
展开2022-2023学年八年级数学上册考点必刷练精编讲义(人教版)提高
第12章《全等三角形》
12.2 三角形全等的判定
知识点1:全等三角形的判定
【典例分析01】(2021秋•兰考县期末)如图,∠B=∠C,要使△ABD≌△ACE,只需增加的一个条件是 BD=CE(答案不唯一) (只需填写一个你认为适合的条件).
解:添加的条件是BD=CE,
理由是:∵∠B=∠C,
∴AB=AC,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS),
故答案为:BD=CE(答案不唯一).
【变式训练1-1】(2022•南明区二模)如图,已知AB=CD,若使△ABC≌△DCB,则不能添加下列选项中的( )
A.∠ABC=∠DCB B.BO=CO C.AO=DO D.∠A=∠D
解:A.AB=CD,∠ABC=∠DCB,BC=CB,符合全等三角形的判定定理SAS,能推出△ABC≌△DCB,故本选项不符合题意;
B.∵OB=OC,
∴∠ABC=∠DCB,
AB=CD,∠ABC=∠DCB,BC=CB,符合全等三角形的判定定理SAS,能推出△ABC≌△DCB,故本选项不符合题意;
C.∵AB=CD,AO=DO,
∴OB=OC,
∴∠ABC=∠DCB,
AB=CD,∠ABC=∠DCB,BC=CB,符合全等三角形的判定定理SAS,能推出△ABC≌△DCB,故本选项不符合题意;
D.AB=CD,BC=CB,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DCB,故本选项符合题意;
故选:D.
【变式训练1-2】(2021秋•玉屏县期末)如图,AD∥MN∥BC,∠ADC=90°,AD=BC,那么,图中的全等三角形共有( )
A.1对 B.2对 C.3对 D.4对
解:∵AD∥MN∥BC,
∴∠ADC+∠BCD=90°,∠MND=∠BCD,∠MNC=∠ADC,
∵∠ADC=90°,
∴∠BCD=∠MNC=∠MND=90°=∠ADC,
在△ADC和△BCD中,
,
∴△ADC≌△BCD(SAS),
∴AC=BD,∠A=∠B,
在△ADM和△BCM中,
,
∴△ADM≌△BCM(AAS),
∴DM=CM,
∵MN⊥DC,
∴DN=CN,
在△MDN和△MCN中,
,
∴△MDN≌△MCN(SSS),
即全等三角形有3对,
故选:C.
【变式训练1-3】(2021秋•天津期末)如图,已知AB=AE,∠EAB=∠DAC,添加一个条件后,仍无法判定△AED≌△ABC的是( )
A.AD=AC B.∠E=∠B C.ED=BC D.∠D=∠C
解:∵∠EAB=∠DAC,
∴∠EAB+∠BAD=∠DAC+∠BAD,
∴∠EAD=∠BAC,
A.AB=AE,∠EAD=∠BAC,AD=AC,符合全等三角形的判定定理SAS,能推出△AED≌△ABC,故本选项不符合题意;
B.∠E=∠B,AB=AE,∠EAD=∠BAC,符合全等三角形的判定定理ASA,能推出△AED≌△ABC,故本选项不符合题意;
C.AB=AE,ED=BC,∠EAD=∠BAC,不符合全等三角形的判定定理,不能推出△AED≌△ABC,故本选项符合题意;
D.∠D=∠C,∠EAD=∠BAC,AB=AE,符合全等三角形的判定定理AAS,能推出△AED≌△ABC,故本选项不符合题意;
故选:C.
【变式训练1-4】(2021秋•诸暨市期末)如图,DE=AC,∠1=∠2,要使△DBE≌△ABC还需添加一个条件是 ∠D=∠A(答案不唯一) .(只需写出一种情况)
解:添加的条件是∠D=∠A,
理由是:∵∠1=∠2,
∴∠1+∠ABE=∠2+∠ABE,
即∠DBE=∠ABC,
在△DBE和△ABC中,
,
∴△DBE≌△ABC(AAS),
故答案为:∠D=∠A(答案不唯一).
【变式训练1-5】(2021秋•平定县期中)已知:如图,MS⊥PS,MN⊥SN,PQ⊥SN,垂足分别为S、N、Q,且MS=PS.求证:△MNS≌△SQP.
解:∵MS⊥PS,MN⊥SN,PQ⊥SN,
∴∠M+∠MSN=∠MSN+∠PSQ,
∴∠M=∠PSQ;
在△MNS与△SQP中,
,
∴△MNS≌△SQP(AAS).
【变式训练1-6】(2021秋•拱墅区期中)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.
(1)从图中任找两组全等三角形;
(2)从(1)中任选一组全等三角形,说明理由.
解:(1)△ABE≌△CDF,△ADF≌△CBE,△ADC≌△CBA;
(2)△ABE≌△CDF;
理由:∵AF=CE,
∴AE=CF,
∵AB∥CD,
∴∠BAE=∠DCF,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(AAS).
知识点2:直角三角形的判定
【典例分析02】(2021秋•韶关期末)如图,已知∠C=∠D=90°,添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是( )
A.∠ABC=∠ABD B.∠BAC=∠BAD C.AC=AD D.AC=BC
解:A.∵∠ABC=∠ABD,∠C=∠D=90°,AB=AB,
∴Rt△ABC≌Rt△ABD(AAS),故本选项不符合题意;
B.∵∠BAC=∠BAD,∠C=∠D=90°,AB=AB,
∴Rt△ABC≌Rt△ABD(AAS),故本选项不符合题意;
C.∵∠C=∠D=90°,AB=AB,AC=AD,
∴Rt△ABC≌Rt△ABD(HL),故本选项符合题意;
D.根据∠C=∠D=90°,AB=AB,AC=BC不能推出Rt△ABC≌Rt△ABD,故本选项不符合题意;
故选:C.
【变式训练2-1】(2022春•兴业县校级期中)如图,BF=CE,AE⊥BC,DF⊥BC,根据‘HL’证明Rt△ABE≌Rt△DCF,则还要添加( )
A.∠A=∠D B.AB=DC C.∠B=∠C D.AE=BF
解:∵BF=CE,
∴BF﹣EF=CE﹣EF,即BE=CF,
根据‘HL’证明Rt△ABE≌Rt△DCF,
需要添加AB=CD,
故选:B.
【变式训练2-2】(2021秋•朝天区期末)如图,∠C=90°,AC=10,BC=5,AX⊥AC,点P和点Q从A点出发,分别在线段AC和射线AX上运动,且AB=PQ,当点P运动到AP= 5或10 ,△ABC与△APQ全等.
解:∵AX⊥AC,
∴∠PAQ=90°,
∴∠C=∠PAQ=90°,
分两种情况:
①当AP=BC=5时,
在Rt△ABC和Rt△QPA中,,
∴Rt△ABC≌Rt△QPA(HL);
②当AP=CA=10时,
在△ABC和△PQA中,,
∴Rt△ABC≌Rt△PQA(HL);
综上所述:当点P运动到AP=5或10时,△ABC与△APQ全等;
故答案为:5或10.
【变式训练2-3】(2020•黑龙江)如图,Rt△ABC和Rt△EDF中,∠B=∠D,在不添加任何辅助线的情况下,请你添加一个条件 AB=ED(BC=DF或AC=EF或AE=CF) ,使Rt△ABC和Rt△EDF全等.
解:添加的条件是:AB=ED,
理由是:∵在Rt△ABC和Rt△EDF中
,
∴Rt△ABC≌Rt△EDF(ASA),
故答案为:AB=ED.
12.(2019秋•勃利县期末)如图,AB⊥BC、DC⊥BC,垂足分别为B、C,AB=6,BC=8,CD=2,点P为BC边上一动点,当BP= 2 时,形成的Rt△ABP与Rt△PCD全等.
解:当BP=2时,Rt△ABP≌Rt△PCD,
∵BC=8,BP=2,
∴PC=6,
∵AB⊥BC、DC⊥BC,
∴∠B=∠C=90°,
在△ABP和△PCD中,
∴△ABP≌△PCD(SAS),
故答案为:2.
【变式训练2-4】(2019秋•北流市期末)如图(1),AB⊥AD,ED⊥AD,AB=CD,AC=DE,试说明BC⊥CE的理由;
如图(2),若△ABC向右平移,使得点C移到点D,AB⊥AD,ED⊥AD,AB=CD,AD=DE,探索BD⊥CE的结论是否成立,并说明理由.
解:(1)∵AB⊥AD,ED⊥AD,
∴∠A=∠D=90°.
在△ABC和△DCE中,
∴△ABC≌△DCE(SAS).
∴∠B=∠DCE.
∵∠B+∠ACB=90°,
∴∠ACB+∠DCE=90°.
∴∠BCE=90°,
即BC⊥CE;
(2)∵AB⊥AD,ED⊥AD,
∴∠A=∠CDE=90°.
在△ABC和△DCE中,
∴△ABD≌△DCE(SAS).
∴∠B=∠DCE.
∵∠B+∠ADB=90°,
∴∠ADB+∠DCE=90°.
BD⊥CE.
【变式训练2-5】(2016秋•临河区期中)如图,AB=AC,∠BAC=90°,BD⊥AE于D,CE⊥AE于E,且BD>CE.
求证:BD=EC+ED.
证明:∵∠BAC=90°,CE⊥AE,BD⊥AE,
∴∠ABD+∠BAD=90°,∠BAD+∠DAC=90°,∠ADB=∠AEC=90°.
∴∠ABD=∠DAC.
∵在△ABD和△CAE中
,
∴△ABD≌△CAE(AAS).
∴BD=AE,EC=AD.
∵AE=AD+DE,
∴BD=EC+ED.
知识点3:全等三角形的判定与性质
【典例分析03】(2021秋•松桃县期末)如图①:△ABC中,AC=BC,延长AC到E,过点E作EF⊥AB交AB的延长线于点F,延长CB到G,过点G作GH⊥AB交AB的延长线于H,且EF=GH.
(1)求证:△AEF≌△BGH;
(2)如图②,连接EG与FH相交于点D,若AB=4,求DH的长.
(1)证明:∵AC=BC,
∴∠A=∠ABC.
∵∠ABC=∠GBH,
∴∠A=∠GBH.
∵EF⊥AB,GH⊥AB,
∴∠AFE=∠BHG.
在△ADG和△CDF中,
,
∴△AEF≌△BGH(AAS).
(2)解:∵△AEF≌△BGH,
∴AF=BH,
∴AB=FH=4.
∵EF⊥AB,GH⊥AB,
∴∠EFD=∠GHD.
在△EFD和△GHD中,
∴△EFD≌△GHD(AAS),
∴.
【变式训练3-1】(2021秋•海沧区期末)如图,已知△ABC与△DEF,B,E,C,D四点在同一条直线上,其中AB=DF,BC=EF,AC=DE,则∠ACB等于( )
A.∠EFD B.∠ABC C.2∠D D.∠AFE
解:在△ABC和△DFE中,
,
∴△ABC≌△DFE(SSS),
∴∠ACB=∠DEF,
又∵∠AFE=∠ACB+∠DEF,
∴∠AFE=2∠ACB,
∴∠ACB=∠AFE,
故选:D.
【变式训练3-2】(2021秋•卧龙区期末)如图,E是∠AOB平分线上的一点,EC⊥OA于点C,ED⊥OB于点D,连结CD,若∠ECD=25°,则∠AOB=( )
A.50° B.45° C.40° D.25°
解:∵OE平分∠AOB,EC⊥OA,ED⊥OB,
∴ED=EC,
∴∠EDC=∠ECD,
∵∠ODE=∠OCE=90°,
∴∠ODC=∠OCD,
∴OC=OD,
∵ED=EC,
∴点O与点E都在CD的垂直平分线上,
∴OE是CD的垂直平分线,
∴∠AOE+∠OCD=90°,∠OCD+∠DCE=90°,
∴∠AOE=∠ECD=25°,
∴∠AOB=2∠AOE=50°,
故选:A.
【变式训练3-3】(2021秋•汉阳区校级期末)如图,在△ABC中,∠ABC=45°,过点C作CD⊥AB于点D,过点B作BM⊥AC于点M,连接MD,过点D作DN⊥MD,交BM于点N.CD与BM相交于点E,若点E是CD的中点,则下列结论中正确的有( )个
①∠AMD=45°;②NE﹣EM=MC;③EM:MC:NE=1:2:3;④S△ACD=2S△DNE.
A.1 B.2 C.3 D.4
解:①∵CD⊥AB,
∴∠BDC=∠ADC=90°,
∵∠ABC=45°,
∴BD=CD,
∵BM⊥AC,
∴∠AMB=∠ADC=90°,
∴∠A+∠DBN=90°,
∠A+∠DCM=90°,
∴∠DBN=∠DCM,
∵DN⊥MD,
∴∠CDM+∠CDN=90°,
∵∠CDN+∠BDN=90°,
∴∠CDM=∠BDN,
∵∠DBN=∠DCM,BD=CD,∠CDM=∠BDN,
∴△BDN≌△CDM(ASA),
∴DN=DM,
∵∠MDN=90°,
∴△DMN是等腰直角三角形,
∴∠DMN=45°,
∴∠AMD=90°﹣45°=45°,
故①正确;
②由①知,DN=DM,
过点D作DF⊥MN于F,
则∠DFE=90°=∠CME,
∵DN⊥MD,
∴DF=FN,
∵点E是CD的中点,
∴DE=CE,
在△DEF与△CEM中,
,
∴△DEF≌△CEM(AAS),
∴ME=EF,CM=DF,
∴FN=CM,
∵NE﹣EF=FN,
∴NE﹣EM=MC,
故②正确;
③由ME=EF,MF=NF,
设EF=x,则EM=x,MC=MF=DF=2x,NE=3x,
∴EM:MC:NE=1:2:3,
故③正确;
④如图,∵CD⊥AB,
∴∠BDE=∠CDA=90°,
由①知,∠DBN=∠DCM,BD=CD,
∴△BED≌△CAD(ASA),
∴S△BED=S△CAD,
由①知,△BDN≌△CDM,
∴BN=CM,
∵CM=FN,
∴BN=FN,
∴BN<NE,
∴S△BDN<S△DEN,
∴S△BED<2S△DNE,
∴S△ACD<2S△DNE,
故④错误,
∴正确的有3个,
故选:C.
【变式训练3-4】(2021秋•覃塘区期末)如图,在△ABC中,AB=AC,点D、E、F分别在边BC、AB、AC上,且CD=BE,BD=CF.若∠EDF=42°,则∠BAC的度数是 96° .
解:∵AB=AC,
∴∠B=∠C,
在△BDE与△CFD中,
,
∴△BDE≌△CFD(SAS),
∴∠EDB=∠DFC,∠FDC=∠BED,
∵∠EDF+∠BDE+∠FDC=180°,
∵∠B+∠BED+∠EDB=180°,
∴∠B=∠EDF=42°,
∴∠BAC=180°﹣∠B﹣∠C=180°﹣42°﹣42°=96°,
故答案为:96°.
【变式训练3-5】(2021秋•咸安区期末)如图,C为线段AB上一动点(不与点A、B重合),在AB的上方分别作△ACD和△BCE,且AC=DC,BC=EC,∠ACD=∠BCE,AE、BD交于点P.有下列结论:①AE=DB;②∠APB=2∠ADC;③当AC=BC时,PC⊥AB;④PC平分∠APB.其中正确的是 ①②③④ .(把你认为正确结论的序号都填上)
解:∵∠ACD=∠BCE,
∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB,
在△ACE和△DCB中,
,
∴△ACE≌△DCB(SAS),
∴AE=DB,故①正确;
∵△ACE≌△DCB,
∴∠CAE=∠CDB,
∵∠ACD=∠CDB+∠CBD,
∴∠ACD=∠CAE+∠CBD,
∵∠CAE+∠CBD+∠APB=180°,
∴∠ACD+∠APB=180°,
∵AC=DC,
∴∠CAD=∠ADC,
∵∠ACD+∠CAD+∠ADC=180°,
∴∠ACD+2∠ADC=180°,
∴∠APB=2∠ADC,故②正确;
∵AC=BC,AC=DC,BC=EC,
∴AC=BC=DC=EC,
∴∠CAE=∠CBD,
∴PA=PB,
∵AC=BC,
∴PC⊥AB,故③正确;
如图,连接PC,过点C作CG⊥AE于G,CH⊥BD于H,
∵△ACE≌△DCB,
∴S△ACE=S△DCB,AE=BD,
∴×AE×CG=×DB×CH,
∴CG=CH,
∵CG⊥AE,CH⊥BD,
∴PC平分∠APB,故④正确,
故答案为:①②③④.
【变式训练3-6】(2021秋•弋江区期末)已知:如图,在△ABC中,AB=AC,在△ADE中,AD=AE,且∠BAC=∠DAE,连接BD,CE交于点F,连接AF.
(1)求证:△ABD≌△ACE;
(2)求证:FA平分∠BFE.
证明:(1)∵∠BAC=∠DAE,
∴∠BAC+∠CAD=∠DAE+∠CAD,
即∠BAD=∠CAE,
∵在△BAD和△CAE中,
,
∴△BAD≌△CAE(SAS);
(2)如图,作AM⊥BD于M,作AN⊥CE于N.
由△BAD≌△CAE,
∴BD=CE,S△BAD=S△CAE,
∵,
∴AM=AN,
∴点A在∠BFE平分线上,
∴FA平分∠BFE.
知识点4:全等三角形的应用
【典例分析04】(2021秋•两江新区期末)在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=a,EF=b,用a和b表示圆形容器的壁厚是 (b﹣a) .
解:连接AB.
在△AOB和△DOC中,
,
∴△AOB≌△DOC(SAS),
∴AB=CD=a,
∵EF=b,
∴圆柱形容器的壁厚是(b﹣a),
故答案为:(b﹣a).
【变式训练4-1】(2021秋•靖西市期末)如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带来第 ③ 块去配.
解:因为第③块中有完整的两个角以及他们的夹边,利用ASA易证三角形全等,故应带第③块.
故答案为:③.
【变式训练4-2】(2021秋•临海市期末)如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯的水平长度DF相等,那么判定△ABC与△DEF全等的依据是( )
A.HL B.ASA C.AAS D.SSS
解:∵滑梯、墙、地面正好构成直角三角形,
在Rt△ABC和Rt△DEF中,
,
∴Rt△ABC≌Rt△DEF(HL),
故选:A.
【变式训练4-3】(2021秋•东台市期末)如图,要测量河两岸相对的A、B两点的距离,可以在与AB垂直的河岸BF上取C、D两点,且使BC=CD,从点D出发沿与河岸BF的垂直方向移动到点E,使点E与A,C在一条直线上,可得△ABC≌△EDC,这时测得DE的长就是AB的长.判定△ABC≌△EDC最直接的依据是( )
A.ASA B.HL C.SAS D.SSS
解:因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,
所以用到的是两角及这两角的夹边对应相等即ASA这一方法.
故选:A.
【变式训练4-4】(2021秋•遵化市期中)如图,操场上有两根旗杆间相距12m,小强同学从B点沿BA走向A,一定时间后他到达M点,此时他测得CM和DM的夹角为90°,且CM=DM,已知旗杆AC的高为3m,小强同学行走的速度为0.5m/s,则:
(1)请你求出另一旗杆BD的高度;
(2)小强从M点到达A点还需要多长时间?
解:(1)∵CM和DM的夹角为90°,
∴∠1+∠2=90°,
∵∠DBA=90°,
∴∠2+∠D=90°,
∴∠1=∠D,
在△CAM和△MBD中,,
∴△CAM≌△MBD(AAS),
∴AM=DB,AC=MB,
∵AC=3m,
∴MB=3m,
∵AB=12m,
∴AM=9m,
∴DB=9m;
(2)9÷0.5=18(s).
答:小强从M点到达A点还需要18秒.
【变式训练4-5】(2014秋•富顺县校级期末)如图,公园有一条“Z”字形道路,其中AB∥CD,在E,M,F处各有一个小石凳,且BE=CF,M为BC的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.
解:三个小石凳在一条直线上.
证明如下:连接EM,MF,
∵M为BC中点,
∴BM=MC.
又∵AB∥CD,
∴∠EBM=∠FCM.
在△BEM和△CFM中,
BE=CF,∠EBM=∠FCM,BM=CM,
∴△BEM≌△CFM(SAS),
∴∠BME=∠CMF,
又∠BMF+∠CMF=180°,
∴∠BMF+∠BME=180°,
∴E,M,F在一条直线上.
初中数学人教版八年级上册15.3 分式方程优秀课后作业题: 这是一份初中数学人教版八年级上册15.3 分式方程优秀课后作业题,文件包含提高练153分式方程原卷版docx、基础练153分式方程原卷版docx、知识点153分式方程原卷版docx、提高练153分式方程解析版docx、基础练153分式方程解析版docx、知识点153分式方程解析版docx等6份试卷配套教学资源,其中试卷共66页, 欢迎下载使用。
【同步讲义】人教版数学八年级上册-(知识点+基础练+提高练)14.3 因式分解 讲义: 这是一份【同步讲义】人教版数学八年级上册-(知识点+基础练+提高练)14.3 因式分解 讲义,文件包含提高练143因式分解原卷版docx、基础练143因式分解原卷版docx、知识点143因式分解原卷版docx、提高练143因式分解解析版docx、基础练143因式分解解析版docx、知识点143因式分解解析版docx等6份试卷配套教学资源,其中试卷共70页, 欢迎下载使用。
【同步讲义】人教版数学八年级上册-(知识点+基础练+提高练)14.2 乘法公式 讲义: 这是一份【同步讲义】人教版数学八年级上册-(知识点+基础练+提高练)14.2 乘法公式 讲义,文件包含基础练142乘法公式原卷版docx、基础练142乘法公式解析版docx、提高练142乘法公式原卷版docx、提高练142乘法公式解析版docx、知识点142乘法公式原卷版docx、知识点142乘法公式解析版docx等6份试卷配套教学资源,其中试卷共100页, 欢迎下载使用。