【同步讲义】北师大版数学九年级上册:第10讲 概率的进一步认识 讲义
展开第10讲 概率的进一步认识
课程标准 |
1.进一步认识频率与概率的关系,加深对概率的理解; 2.会用列表和画树状图等方法计算简单事件发生的概率; 3.能利用重复试验的频率估计随机事件的概率; 4.学会运用概率知识解决简单的实际问题. |
知识点01 用树状图或表格求概率
1.树状图
当一次试验要涉及 或更多个因素时,为了不重不漏地列出所有可能的结果,通常采用树形图,也称树形图、树图.
是用树状图形的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.
注意:
(1)树形图法适用于各种情况出现的总次数不是很大时,求概率的问题;
(2)在用树形图法求可能事件的概率时,应注意各种情况出现的可能性务必相同.
2.列表法
当一次试验要涉及 因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.
是用表格的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.
注意:
(1)列表法适用于各种情况出现的总次数不是很大时,求概率的问题;
(2)列表法适用于涉及两步试验的随机事件发生的概率.
3.用列举法求概率的一般步骤
(1)列举(列表、画树状图)事件所有可能出现的结果,并判断每个结果发生的可能性是否都相等;
(2)如果都相等,再确定所有可能出现的结果的个数n和其中出现所求事件A的结果个数m;
(3)用公式计算所求事件A的概率.即 .
4.判断游戏的公平性
(1)判断游戏公平性的方法
游戏是否公平,关键是看游戏双方获胜的机会是否一样,即判断双方双方获胜的概率是否相等。若 ,则游戏 ;若概率不相同,则游戏不公平。
(2)把不公平的游戏变为公平的方法
改变游戏 ,使双方获胜的 。
知识点02 用频率估计概率
1.频率与概率的定义
频率:在相同条件下重复n次试验,事件A发生的次数m与试验总次数n的比值.
概率:事件A的频率接近与某个常数,这时就把这个常数叫做事件A的概率,记作P(A).
2.频率与概率的关系
事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近.可见,概率是频率的稳定值,而频率是概率的近似值.
注意:
(1)频率本身是随机的,在试验前不能确定,无法从根本上来刻画事件发生的可能性的大小,在大量重复试验的条件下可以近似地作为这个事件的概率;
(2)频率和概率在试验中可以非常接近,但不一定相等;
(3)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的.
3.利用频率估计概率
当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.
注意:
用试验去估计随机事件发生的概率应尽可能多地增加试验次数,当试验次数很大时,结果将较为精确.
4.模拟试验
(1)模拟试验
在用试验法求某些事件发生的概率时,往往受试验条件的限制,使试验具有一定难度,或所等的结果误差较大,或试验次数太多,或试验具有一定的破坏性,因而完成试验既费时又费力。这时,我们可以采用模拟试验的方法来估计事件发生的概率。
(2)模拟试验的两种方法
①利用替代物模拟试验估计概率;
②利用计算器模拟试验估计概率。
(3)利用计算器产生随机数的大体步骤
①进入产生随机数状态;
②输入所产生随机数的范围;
③按键得出随机数。
考法01 用树状图或表格求概率
【典例1】如图所示,甲乙两个转盘被等分成五个扇形区域,上面分别标有数字,同时自由转动两个转盘,转盘停止后,两个指针同时落在偶数上的概率是( ).
A. B. C. D.
【即学即练】如图所示的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针指向的数字之和大于8的概率是( )
A. B. C. D.
【典例2】不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是( )
A. B. C. D.
【即学即练】甲口袋中有2个白球、1个红球,乙口袋中有1个白球、1个红球,这些球除颜色外无其他差别.分别从每个口袋中随机摸出1个球.下列事件中,概率最大的是( )
A.摸出的2个球颜色相同 B.摸出的2个球颜色不相同
C.摸出的2个球中至少有1个红球 D.摸出的2个球中至少有1个白球
考法02 频率与概率
【典例3】某校团支部组织部分共青团员开展学雷锋志愿者服务活动,每个志愿者都可以从以下三个项目中任选一项参加:①敬老院做义工;②文化广场地面保洁;③路口文明岗值勤.则小明和小慧选择参加同一项目的概率是( )
A. B. C. D.
【即学即练】从1,2,3这3个数中随机抽取两个数相加,和为偶数的概率是( )
A. B. C. D.
【典例4】“早发现,早报告,早隔离,早治疗”是我国抗击“新冠肺炎”的宝贵经验,其中“早”字出现的频率是( )
A. B. C. D.
【即学即练】抛掷两枚均匀的硬币,当抛掷次数很多以后,两个硬币出现一个正面朝上一个反面朝上的频率值大约稳定在( )
A.25% B.50% C.75% D.33.3%
考法03 利用频率估计概率
【典例5】一个不透明的袋子中装有除颜色外均相同的4个白球和若干个绿球,每次摇均匀后随机摸出一个球,记下颜色后再放回袋中,经大量试验,发现摸到绿球的频率稳定在0.2,则摸到绿球的概率约为( )
A.0.2 B.0.5 C.0.6 D.0.8
【即学即练】不透明的袋子中装有10个黑球和若干个白球,这些球除颜色外无其他差别.从袋子中随机摸出一球记下其颜色,再把它放回袋子中摇匀,重复上述过程,共试验400次,其中有300次摸到白球,由此估计袋子中的白球大约有( )
A.6个 B.10个 C.15个 D.30个
【典例6】某批羽毛球的质量检验结果如下:
抽取的羽毛球数a | 100 | 200 | 400 | 600 | 800 | 1000 | 1200 |
优等品的频数b | 93 | 192 | 380 | 561 | 752 | 941 | 1128 |
优等品的频率 | 0.930 | 0.960 | 0.950 | 0.935 | 0.940 | 0.941 | 0.940 |
小明估计,从这批羽毛球中任意抽取的一只羽毛球是优等品的概率是0.94.下列说法中,正确的是( )A.如果继续对这批羽毛球进行质量检验,优等品的频率将在0.94附近摆动
B.从这批羽毛球中任意抽取一只,一定是优等品
C.从这批羽毛球中任意抽取50只,优等品有47只
D.从这批羽毛球中任意抽取1100只,优等品的频率在0.940~0.941的范围内
【即学即练】王师傅对某批零件的质量进行了随机抽查,并将抽查结果绘制成如下表格,请你根据表格估计,若从该批零件中任取一个,为合格零件的概率为( )
随机抽取的零件个数 | 20 | 50 | 100 | 500 | 1000 |
合格的零件个数 | 18 | 46 | 91 | 450 | 900 |
零件的合格率 | 0.9 | 0.92 | 0.91 | 0.9 | 0.9 |
A.0.9 B.0.8 C.0.5 D.0.1
考法04 概率的简单应用
【典例7】一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上,每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是( )
A. B. C. D.
【即学即练】一只苍蝇飞到如图所示的一面墙上,最终停在白色区域上的概率是( )
A. B. C. D.
【典例8】笼子里关着一只小松鼠(如图),笼子的主人决定把小松鼠放归大自然,将笼子所有的门都打开,松鼠要先经过第一道门(A,,或C),再经过第二道门(或)才能出去.问松鼠走出笼子的路线(经过的两道门)有( )种不同的可能?
A.12 B.6 C.5 D.2
【即学即练】在三行三列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有1点和6点,2点和5点,3点和4点).开始时,骰子如图(1)所示摆放,朝上的点数是2,最后翻动到如图(2)所示位置.现要求翻动次数最少,则最后骰子朝上的点数为2的概率为( )
A. B. C. D.
题组A 基础过关练
一、单选题
1.在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到白球的概率是( )
A. B. C.1 D.
2.某射击运动员在同一条件下的射击成绩记录如下表所示,根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是( )
射击次数 | 20 | 80 | 100 | 200 | 400 | 1000 |
“射中九环以上”的次数 | 18 | 68 | 82 | 168 | 327 | 823 |
“射中九环以上”的频率 (结果保留两位小数) | 0.90 | 0.85 | 0.82 | 0.84 | 0.82 | 0.82 |
A.0.90 B.0.82 C.0.85 D.0.84
3.随着10月18号第十七届景德镇国际博览会开幕,吸引来无数国内外陶瓷爱好者来景德镇旅游,外国友人汤姆和杰瑞计划看完陶瓷会展之后,然后各自在“古窑”,“瑶里”,“古县衙”,“陶溪川”这四个景点中选一个去参观,汤姆和杰瑞正好选中同一地方的概率是( )
A. B. C. D.
4.下列说法错误的是( )
A.太阳从东方升起是必然事件
B.不可能事件发生的概率为0
C.在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值
D.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖
5.木箱里装有仅颜色不同的9张红色和若干张蓝色卡片,随机从木箱里摸出一张卡片后记下颜色后再放回,经过多次的重复实验,发现摸到红色卡片的频率稳定在0.6附近,则估计木箱中蓝色卡片有( )
A.6张 B.8张 C.10张 D.4张
6.某中考体育训练营开设的培训项目有:长跑、立定跳远、一分钟跳绳、足球绕杆.王林随机选择两个项目进行培训,则恰好选中立定跳远和一分钟跳绳的概率是( )
A. B. C. D.
二、填空题
7.在一个不透明的盒子中装有黑球和白球共500个,这些球除颜色外其余均相同,将球搅匀后任意摸出一个球,记下颜色后放回,通过大量重复摸球试验后,发现摸到白球的频率稳定在0.1,则盒子中白球有______个.
8.如图,一块正方形地板由9块边长均相等的小正方形组成,米粒随机地撒在如图所示的正方形地板上,则米粒落在灰色区域的概率为______________.
三、解答题
9.某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被分成若干扇形区域)进行抽奖促销活动,并规定:凡在商场消费的顾客,均可获得一次转动转盘的机会.如果转盘停止后,指针所指区域为“一等奖”、“二等奖”、“三等奖”、“四等奖”、“五等奖”,则可获得对应的奖品;指针所指区域为“谢谢”则没有奖品;指针指向两区域的边界线,顾客可以再转动一次,直到指针不指向边界线时停止.根据以上规则,回答下列问题:
(1)若“三等奖”所在扇形的圆心角为50°,则顾客获得三等奖的概率为______;
(2)若商场计划让顾客通过转动一次转盘获得“五等奖”的概率为,请你求出转盘中“五等奖”所在扇形的圆心角度数.
10.从一副普通的扑克牌中取出三张牌,它们的牌面数字分别为2,3,6.将这三张扑克牌背面朝上,洗匀,从中随机抽取一张,记下数字.然后将抽取的牌背面朝上放回,洗匀,再从中随机抽取一张.请利用画树状图或列表的方法,求抽取的这两张牌的牌面教字恰好相同的概率.
题组B 能力提升练
一、单选题
1.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是( )
A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球
D.掷一个质地均匀的正六面体骰子,向上的面点数是6
2.已知一次函数,从2,-3中随机取一个值,从1,-1,-2中随机取一个值,则该一次函数的图象经过第二、三、四象限的概率为( )
A. B. C. D.
3.在一个不透明的盒子中装有a个球,这些球除颜色外无其他差别,这a个球中只有4个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在0.2左右,则a的值约为( )
A.12 B.15 C.18 D.20
4.为做好疫情防控工作,某学校门口设置了,两条体温快速检测通道,该校同学王明和李强均从通道入校的概率是( )
A. B. C. D.
5.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在( )
A.三边中线的交点 B.三边垂直平分线的交点
C.三条角平分线的交点 D.三边上高的交点
6.为了疫情防控,某小区需要从甲、乙、丙、丁 4名志愿者中随机抽取2名负责该小区入口处的测温工作,则甲被抽中的概率是( )
A. B. C. D.
二、填空题
7.从某玉米种子中抽取6批,在同一条件下进行发芽实验,有关数据如下:
种子粒数 | 100 | 400 | 800 | 1000 | 2000 | 5000 |
发芽种子粒数 | 83 | 298 | 652 | 791 | 1606 | 4005 |
发芽频率 | 0.830 | 0.745 | 0.815 | 0.791 | 0.803 | 0.801 |
根据以上数据可以估计,该玉米种子发芽的概率约为________(精确到0.1).
8.如图,甲、乙、丙3人站在网格中的三个格子中,小王随机站在剩下的空格中,与图中3人均不在同一行的概率是________.
三、解答题
9.两人做“锤子、剪刀、布”的游戏.游戏规则是:若一人出“剪刀”,另一人出“布”,则出“剪刀”者胜;若一人出“锤子”,另一人出“剪刀”,则出“锤子”者胜;若一人出“布”,另一人出“锤子”,则出“布”者胜.若两人出相同的手势,则认为此次游戏无效,重新开始游戏.
(1)请用画树状图或列表法写出游戏中所有可能出现的有效结果.
(2)在这个游戏的有效结果中,无论你出“锤子、剪刀、布”中的哪一个,你获胜的概率是多少?
10.某校开展以“奋斗百年路•启航新征程”为主题的活动来庆祝建党百年.活动分为两个阶段:第一阶段是宣讲红色故事,有以党建党史、文化传承、人物传记为素材的3个宣讲项目(分别用A、B、C表示);第二阶段是主题文艺创作,有文学创作、美术创作、舞蹈创作、音乐创作4个项目(分别用D、E、F、G表示).要求参加人员在每个阶段各随机抽取一个项目完成.若小明参加该活动,请用画树状图或列表的方法列出小明参加项目的所有可能的结果,并求小明恰好抽中项目C和E的概率.
题组C 培优拔尖练
一、单选题
1.如图所示的电路图,同时闭合两个开关能形成闭合电路的概率是( )
A. B. C. D.1
2.将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为( )
A. B. C. D.
3.活动课上,小林、小军、小强3位同学和其他6位同学一起进行3人制篮球赛,他们将9人随机抽签分成三组,则小林、小军、小强三人恰好分在3个不同组的概率是( )
A. B. C. D.
4.某市有6名教师志愿到四川地震灾区的甲、乙、丙三个镇去支教,每人只能去一个镇,则恰好其中一镇去4名,另两镇各去1名的概率为( )
A. B. C. D.
5.如图所示,阴影是两个相同菱形的重合部分,一个小球随机的在图案上滚动,最后停留在阴影部分的概率是( )
A. B. C. D.
6.下列说法正确的是( )
A.“购买张彩票就中奖”是不可能事件
B.“概率为的事件”是不可能事件
C.“任意画一个六边形,它的内角和等于”是必然事件
D.从中任取个不同的数,分别记为和,那么的概率是
二、填空题
7.如图,有8张标记数字1-8的卡片.甲、乙两人玩一个游戏,规则是:甲、乙两人轮流从中取走卡片;每次可以取1张,也可以取2张,还可以取3张卡片(取2张或3张卡片时,卡片上标记的数字必须连续);最后一个将卡片取完的人获胜.
若甲先取走标记2,3的卡片,乙又取走标记7,8的卡片,接着甲取走两张卡片,则________(填“甲”或“乙”)一定获胜;若甲首次取走标记数字1,2,3的卡片,乙要保证一定获胜,则乙首次取卡片的方案是________.(只填一种方案即可)
8.现有1,2,3,…,9九个数字,甲、乙轮流从中选出一个数字,从左至右依次填入下图所示的表格中(表中已出现的数字不再重复使用),每次填数时,甲会选择填入后使表中现有数据平均数最大的数字,乙会选择填入后使表中现有数据中位数最小的数字.如图,若表中第一个数字是4,甲先填,则满足条件的填法有______种,请你在表中空白处填出一种符合要求的填数结果.
4 |
|
|
|
|
三、解答题
9.“共和国勋章”获得者钟南山院士说:按照疫苗保护率达到70%计算,中国的新冠疫苗覆盖率需要达到近80%,才有可能形成群体免疫.本着自愿的原则,18至60周岁符合身体条件的中国公民均可免费接种新冠疫苗.居民甲、乙准备接种疫苗,其居住地及工作单位附近有两个大型医院和两个社区卫生服务中心均可免费接种疫苗,提供疫苗种类如下表:
接种地点 | 疫苗种类 | |
医院 | A | 新冠病毒灭活疫苗 |
B | 重组新冠病毒疫苗(CHO细胞) | |
社区卫生服务中心 | C | 新冠病毒灭活疫苗 |
D | 重组新冠病毒疫苗(CHO细胞) |
若居民甲、乙均在A、B、C、D中随机独立选取一个接种点接种疫苗,且选择每个接种点的机会均等.(提示:用A、B、C、D表示选取结果)
(1)居民甲接种的是新冠病毒灭活疫苗的概率为 ;
(2)请用列表或画树状图的方法求居民甲、乙接种的是相同种类疫苗的概率.
10.国宝大熊猫作为体育盛会的吉祥物见证了祖国的日益强大.从1990年北京亚运会的“盼盼”,到2008年北京奥运会的“福娃晶晶”,再到北京冬奥会的“冰墩墩”.现在将4张卡片(如图,分别记为A、B、C、D)背面朝上洗匀,这些卡片除图案外其余均相同.
(1)小明从中随机抽取1张,抽到冰墩墩的概率为______;
(2)小明从中随机抽取2张,抽取规则为:先随机抽取1张不放回,再随机抽取1张.请利用树状图或列表法求出小明抽取的2张卡片都是冰墩墩的概率.