初中数学北师大版八年级下册4 分式方程精品习题
展开解分式方程的一般步骤:1)去分母(方程两边同乘最简公分母,约去分母,把分式方程化成整式方程)。
2)解整式方程。
3)验根(把整式方程的解代入最简公分母,
情况一:最简公分母为0,则该根不是分式方程的解,这个根叫原分式方程的增根;
情况二:若最简公分母不为0,则该根是分式方程的解。
分式的化简求值:
1)分式通过化简后,代入适当的值解决问题,注意代入的值要使分式的分母不为0;
2)灵活应用分式的基本性质,对分式进行通分和约分,一般要先分解因式;
3)化简求值时,一要注意整体思想,二要注意解题技巧,三要注意代入的值要使分式有意义。
分式方程解决实际问题的步骤:
1)根据题意找等量关系2)设未知数3)列出方程4)解方程,并验根(对解分式方程尤为重要)5) 写答案
【题型一】解分式方程
【典题】分式方程的解是( )
A.B.C.D.
【答案】C
【分析】按照解分式方程的步骤解答即可.
【详解】解:
2-(x-1)=0
2-x+1=0
-x=-3
x=3
检验,当x=3时,x-1≠0,故x=3是原分式方程的解.
故答案选C.
【点睛】本题主要考查了解分式方程,解分式方程的基本步骤为去分母、去括号、移项、合并同类项、系数化为1,以及检验,特别是检验是解分式方程的关键.
巩固练习
1.()解分式方程时,去分母化为一元一次方程,正确的是( )
A.x+2=3B.x﹣2=3C.x﹣2=3(2x﹣1)D.x+2=3(2x﹣1)
【答案】C
【分析】最简公分母是2x﹣1,方程两边都乘以(2x﹣1),即可把分式方程便可转化成一元一次方程.
【详解】方程两边都乘以(2x﹣1),得
x﹣2=3(2x﹣1),
故选C.
【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
2.()解分式方程时,去分母后变形为
A.B.
C.D.
【答案】D
【详解】解:方程,
两边都乘以x-1去分母后得:2-(x+2)=3(x-1),
故选D.
3.()方程的解为( )
A.B.C.D.原分式方程无解
【答案】D
【分析】利用去分母,去括号,移项,合并同类项,系数化1,检验解分式方程即可.
【详解】解:
分式两边同乘得: ,
移项合并同类项得:,
检验:当,,
∴是原方程的增根,
∴原方程无解;
故选D.
【点睛】本题考查解分式方程,注意使最简公分母为0的x的值,是方程的增根,要舍掉.
4.()分式方程的解是( )
A.B.C.D.
【答案】D
【分析】两边都乘以2(3x-1),化为整式方程求解,然后检验即可.
【详解】解:,
两边都乘以2(3x-1),得
3(3x-1)-2=7,
∴9x-3-2=7,
∴9x=12,
∴,
检验:当时,2(3x-1) ≠0,
∴是原分式方程的解,
故选D.
【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验.
【题型二】根据方程解的情况求值
【典题】关于x的分式方程3=0有解,则实数m应满足的条件是( )
A.m=﹣2B.m≠﹣2C.m=2D.m≠2
【答案】B
【分析】解分式方程得:即,由题意可知,即可得到.
【详解】解:
方程两边同时乘以得:,
∴,
∵分式方程有解,
∴,
∴,
∴,
∴,
故选B.
【点睛】本题主要考查了分式方程的解,熟练掌握分式方程的解法,理解分式方程有意义的条件是解题的关键.
巩固练习
1.()已知关于x的分式方程的解是正数,则m的取值范围是( )
A.B.C.且D.且
【答案】C
【分析】先将分式方程去分母转化为整式方程,求出整式方程的解,根据分式方程的解为正数得到且,即可求解.
【详解】方程两边同时乘以,得,
解得,
关于x的分式方程的解是正数,
,且,
即且,
且,
故选:C.
【点睛】本题考查了分式方程的解,涉及解分式方程和分式方程分母不为0,熟练掌握知识点是解题的关键.
2.()已知是分式方程的解,那么实数的值为( )
A.3B.4C.5D.6
【答案】B
【分析】将代入原方程,即可求出值.
【详解】解:将代入方程中,得
解得: .
故选:B.
【点睛】本题考查了方程解的概念.使方程左右两边相等的未知数的值就是方程的解.“有根必代”是这类题的解题通法.
3.()若关于x的分式方程有增根,则m的值是( )
A.m=2或m=6B.m=2C.m=6D.m=2或m=﹣6
【答案】A
【分析】根据解分式方程的方法去分母,把分式方程化为整式方程;接下来把增根的值代入到整式方程中,就可以求出m的值.
【详解】∵关于x的分式方程有增根,
∴是方程 的根,
当时,解得:
当时,解得:
故选A.
【点睛】本题主要考查的是分式方程的相关知识,解题的关键是明确增根的含义.
4.()关于x的方程无解,则a的值为( )
A.1B.3C.1或D.1或3
【答案】D
【分析】分式方程去分母转化为整式方程,再分整式方程无解和整式方程的解是分式方程的增根两种情况进行讨论,即可得出答案.
【详解】解:分式方程去分母得:,
整理得:,
当a−1=0,即a=1时,此时整式方程无解,分式方程无解;
当a−1≠0,即a≠1时,由得x=,
若此时分式方程无解,则分式方程有增根,即,增根为x=2,
∴,
解得:a=3,
∴关于x的方程无解时,则a的值为1或3,
故选:D.
【点睛】本题考查了分式方程无解问题,理解分式方程无解有整式方程无解和整式方程的解是分式方程的增根两种情况是解决问题的关键.
5.()若关于x的方程无解,则m的值为( )
A.0B.4或6C.6D.0或4
【答案】D
【分析】先将分时方程化为整式方程,再根据方程无解的情况分类讨论,当时,当时,或,进行计算即可.
【详解】方程两边同乘,得,
整理得,
原方程无解,
当时,;
当时,或,此时,,
解得或,
当时,无解;
当时,,解得;
综上,m的值为0或4;
故选:D.
【点睛】本题考查了分式方程无解的情况,即分式方程有增根,分两种情况,分别是最简公分母为0和化成的整式方程无解,熟练掌握知识点是解题的关键.
6.()若无解则m的值是( )
A.-2B.2C.3D.-3
【答案】C
【分析】先把分式方程化为整式方程求出x,再根据分式方程无根的条件进行求解即可
【详解】解:∵,
∴,
∴,
∵关于x的方程无解,
∴,
∴,
故选:C.
【点睛】本题主要考查了分式方程无解的情况,正确解分式方程得出是解答本题的关键.
【题型三】列分式方程
【典题】某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木,该活动开始后、实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x棵.则下列方程正确的是( )
A.B.C.D.
【答案】B
【分析】设实际平均每天植树x棵,则原计划每天植树(x-50)棵,根据:实际植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可.
【详解】解:设现在平均每天植树x棵,则原计划每天植树(x-50)棵,
根据题意,可列方程:,
故选:B.
【点睛】此题考查了由实际问题列分式方程,关键在寻找相等关系,列出方程.
巩固练习
1.()《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边村的宽度应是多少米?设边衬的宽度为x米,根据题意可列方程( )
A.B.C.D.
【答案】D
【分析】设边衬的宽度为x米,则整幅图画宽为(1.4+2x)米, 整幅图画长为(2.4+2x)米,根据整幅图画宽与长的比是8:13,列出方程即可.
【详解】解:设边衬的宽度为x米,根据题意,得
,
故选:D.
【点睛】本题考查分式方程的应用,根据题意找出等量关系是解题的关键.
2.()我市某区为万人接种新冠疫苗,由于市民积极配合这项工作,实际每天接种人数是原计划的倍,结果提前天完成了这项工作.设原计划每天接种万人,根据题意,所列方程正确的是( )
A.B.
C.D.
【答案】A
【分析】由实际接种人数与原计划接种人数间的关系,可得出实际每天接种万人,再结合结果提前天完成了这项工作,即可得出关于的分式方程,此题得解.
【详解】解:实际每天接种人数是原计划的倍,且原计划每天接种万人,
实际每天接种万人,
又结果提前天完成了这项工作,
.
故选:.
【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.
3.()一辆汽车开往距出发地420km的目的地,若这辆汽车比原计划每小时多行10km,则提前1小时到达目的地.设这辆汽车原计划的速度是x km/h,根据题意所列方程是( )
A.B.
C.D.
【答案】C
【分析】设这辆汽车原计划的速度是x km/h,,则实际速度为km/h,根据题意“提前1小时到达目的地”,列分式方程即可求解.
【详解】解:设这辆汽车原计划的速度是x km/h,则实际速度为km/h,
根据题意所列方程是
故选C
【点睛】本题考查了列分式方程,理解题意列出方程是解题的关键.
4.()为扎实推进“五育”并举工作,加强劳动教育,某校投入2万元购进了一批劳动工具.开展课后服务后,学生的劳动实践需求明显增强,需再次采购一批相同的劳动工具,已知采购数量与第一次相同,但采购单价比第一次降低10元,总费用降低了15%.设第二次采购单价为x元,则下列方程中正确的是( )
A.
B.
C.
D.
【答案】D
【分析】设第二次采购单价为x元,则第一次采购单价为(x+10)元,根据单价=总价÷数量,结合总费用降低了15%,采购数量与第一次相同,即可得出关于x的分式方程.
【详解】解:设第二次采购单价为x元,则第一次采购单价为(x+10)元,
依题意得:,
故选:D.
【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.
5.()为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用万元购买甲型机器人和用万元购买乙型机器人的台数相同,两型号机器人的单价和为万元.若设甲型机器人每台万元,根据题意,所列方程正确的是( )
A.B.
C.D.
【答案】A
【分析】甲型机器人每台万元,根据万元购买甲型机器人和用万元购买乙型机器人的台数相同,列出方程即可.
【详解】解:设甲型机器人每台万元,根据题意,可得 ,
故选:A.
【点睛】本题考查的是分式方程,解题的关键是熟练掌握分式方程.
6.()某工厂生产、两种型号的扫地机器人.型机器人比型机器人每小时的清扫面积多50%;清扫所用的时间型机器人比型机器人多用40分钟. 两种型号扫地机器人每小时分别清扫多少面积?若设型扫地机器人每小时清扫,根据题意可列方程为( )
A.B.
C.D.
【答案】D
【分析】根据清扫100m2所用的时间A型机器人比B型机器人多用40分钟列出方程即可.
【详解】解:设A型扫地机器人每小时清扫xm2,
由题意可得:,
故选D.
【点睛】本题考查了分式方程的实际应用,解题的关键是读懂题意,找到等量关系.
【题型四】分式方程的实际应用
【典题】在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.
(1)乙队单独完成这项工程需要多少天?
(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?
【答案】(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.
【分析】(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.
(2)根据题意,分别求出三种情况的费用,然后把在工期内的情况进行比较即可.
【详解】解:(1)设乙队单独完成需x天.
根据题意,得:.
解这个方程得:x=90.
经检验,x=90是原方程的解.
∴乙队单独完成需90天.
(2)设甲、乙合作完成需y天,则有,
解得,y=36;
①甲单独完成需付工程款为:60×3.5=210(万元).
②乙单独完成超过计划天数不符题意,
③甲、乙合作完成需付工程款为:36×(3.5+2)=198(万元).
答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.
【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
巩固练习
1.()某社区拟建,两类摊位以搞活“地摊经济”,每个类摊位的占地面积比每个类摊位的占地面积多2平方米,建类摊位每平方米的费用为40元,建类摊位每平方米的费用为30元,用60平方米建类摊位的个数恰好是用同样面积建类摊位个数的.
(1)求每个,类摊位占地面积各为多少平方米?
(2)该社拟建,两类摊位共90个,且类摊位的数量不少于类摊位数量的3倍.求建造这90个摊位的最大费用.
【答案】(1)5平方米;3平方米 (2)10520元
【分析】(1)设类摊位占地面积平方米,则类占地面积平方米,根据同等面积建立A类和B类的倍数关系列式即可;
(2)设建类摊位个,则类个,设费用为,由(1)得A类和B类摊位的建设费用,列出总费用的表达式,根据一次函数的性质进行讨论即可.
【详解】解:(1)设每个类摊位占地面积平方米,则类占地面积平方米
由题意得
解得,
∴,经检验为分式方程的解
∴每个类摊位占地面积5平方米,类占地面积3平方米
(2)设建类摊位个,则类个,费用为
∵
∴
,
∵110>0,
∴z随着a的增大而增大,
又∵a为整数,
∴当时z有最大值,此时
∴建造90个摊位的最大费用为10520元
【点睛】本题考查了一次函数的实际应用问题,熟练的掌握各个量之间的关系进行列式计算,是解题的关键.
2.()近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.
(1)求菜苗基地每捆A种菜苗的价格.
(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.
【答案】(1)20元
(2)2250元
【分析】(1)设菜苗基地每捆A种菜苗的价格为x元,根据题意列出方程,解出方程即可;
(2)设:购买A种菜苗捆,则购买B种菜苗捆,花费为y元,根据A种菜苗的捆数不超过B种菜苗的捆数,解出m的取值范围,列出花费y 与A种菜苗捆之间的关系式,根据关系式求出最少花费多少钱即可.
【详解】(1)解:设:菜苗基地每捆A种菜苗的价格为x元,
解得
检验:将代入,值不为零,
∴是原方程的解,
∴菜苗基地每捆A种菜苗的价格为20元.
(2)解:设:购买A种菜苗捆,则购买B种菜苗捆,费用为y元,
由题意可知:,
解得,
又∵,
∴,
∵y随m的增大而减小
∴当时,花费最少,
此时
∴本次购买最少花费2250元.
【点睛】本题考查分式方程与一次函数表达式求最小值,根据题意列出分式方程并检验是解答本题的关键.
3.()“冰墩墩”和“雪容融”作为第24届北京冬奥会和残奥会的吉祥物深受大家喜爱,某文旅店订购“冰墩墩”花费6000元,订购“雪容融”花费3200元,其中“冰墩墩”的订购单价比“雪容融”的订购单价多20元,并且订购“冰墩墩”的数量是“雪容融”的1.25倍.
(1)求文旅店订购“冰墩墩”和“雪容融”的数量分别是多少个;(请列分式方程作答)
(2)该文旅店以100元和80元的单价销售“冰墩墩”和“雪容融”,在“冰墩墩”售出,“雪容融”售出后,文旅店为了尽快回笼资金,决定对剩余的“冰墩墩”每个打a折销售,对剩余的“雪容融”每个降价2a元销售,很快全部售完,若要保证文旅店总利润不低于6060元,求a的最小值.
【答案】(1)文旅店订购“冰墩墩”的数量为100个,“雪容融”的数量为80个
(2)的最小值为8
【分析】(1)设文旅店订购“雪容融”的数量为个,从而可得订购“冰墩墩”的数量为个,再根据两种吉祥物的花费和订购单价建立方程,解方程即可得;
(2)先求出文旅店的总收入,再根据“要保证文旅店总利润不低于6060元”建立一元一次不等式,解不等式即可得.
【详解】(1)解:设文旅店订购“雪容融”的数量为个,则订购“冰墩墩”的数量为个,
由题意得:,
解得,符合题意,
经检验,是所列分式方程的解,
则,
答:文旅店订购“冰墩墩”的数量为100个,“雪容融”的数量为80个;
(2)解:由题意得:文旅店销售“冰墩墩”的收入为(元),
销售“雪容融”的收入为(元),
则,
解得,
答:的最小值为8.
【点睛】本题考查了分式方程的应用、一元一次不等式的应用,正确建立方程和不等式是解题关键.
4.()某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.
(1)求甲、乙两种树苗每棵的价格各是多少元?
(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?
【答案】(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.
【分析】(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;
(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.
【详解】(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,
依题意有,
解得:x=30,
经检验,x=30是原方程的解,
x+10=30+10=40,
答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;
(2)设他们可购买y棵乙种树苗,依题意有
30×(1﹣10%)(50﹣y)+40y≤1500,
解得y≤11,
∵y为整数,
∴y最大为11,
答:他们最多可购买11棵乙种树苗.
【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.
5.()为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3600米的街道地下管网时,每天的施工效率比原计划提高了20%,按这样的进度可以比原计划提前10天完成任务.
(1)求实际施工时,每天改造管网的长度;
(2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?
【答案】(1)实际施工时,每天改造管网的长度是72米
(2)以后每天改造管网至少还要增加36米
【分析】(1)根据每天的施工效率比原计划提高了20%,设未知数,再根据比原计划提前10天完成任务列出方程即可求解;
(2)根据工期不超过40天列出不等式即可求解.
【详解】解:(1)设原计划每天改造管网米,则实际施工时每天改造管网米,
由题意得:,
解得:,
经检验,是原方程的解,且符合题意.
此时,60×(1+20%)=72(米).
答:实际施工时,每天改造管网的长度是72米;
(2)设以后每天改造管网还要增加米,
由题意得:,
解得:.
答:以后每天改造管网至少还要增加36米.
【点睛】本题考查分式方程的应用、一元一次不等式的应用,是中考常规题型,解题的关键在于找出题目中的等量关系、不等关系,列出方程或不等式.
6.()为有效落实双减工作,切实做到减负提质,很多学校决定在课后看护中增加乒乓球项目.体育用品商店得知后,第一次用600元购进乒乓球若干盒,第二次又用600元购进该款乒乓球,但这次每盒的进价是第一次进价的倍,购进数量比第一次少了30盒.
(1)求第一次每盒乒乓球的进价是多少元?
(2)若要求这两次购进的乒乓球按同一价格全部销售完后获利不低于420元,则每盒乒乓球的售价至少是多少元?
【答案】(1)第一次每盒乒乓球的进价是4元
(2)每盒乒乓球的售价至少是6元
【分析】(1)设第一次每盒乒乓球的进价是x元,则第二次每盒乒乓球的进价是元,由题意:第一次用600元购进乒乓球若干盒,第二次又用600元购进该款乒乓球,购进数量比第一次少了30盒,列出分式方程,解方程即可;
(2)设每盒乒乓球的售价为y元,由题意:两次购进的乒乓球按同一价格全部销售完后获利不低于420元,列出一元一次不等式,解不等式即可.
【详解】(1)解:设第一次每盒乒乓球的进价为元,则第二次每盒乒乓球的进价为元;
根据题意,得,
解得
检验:当时,分母不为0,所以是原分式方程的解.
答:第一次每盒乒乓球的进价是4元.
(2)解:设售价为元,根据题意得
解得.
答:每盒乒乓球的售价至少是6元.
【点睛】本题考查了分式方程的应用和一元一次不等式的应用,解题的关键是找准数量关系,列出分式方程和一元一次不等式.
数学八年级下册4 分式方程巩固练习: 这是一份数学八年级下册<a href="/sx/tb_c94890_t7/?tag_id=28" target="_blank">4 分式方程巩固练习</a>,文件包含北师大版八年级数学下册同步精品讲义专题54分式方程教师版docx、北师大版八年级数学下册同步精品讲义专题54分式方程学生版docx等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。
初中数学4 分式方程随堂练习题: 这是一份初中数学4 分式方程随堂练习题,共6页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学苏科版八年级下册第10章 分式10.5 分式方程精品习题: 这是一份初中数学苏科版八年级下册第10章 分式10.5 分式方程精品习题,文件包含105分式方程原卷版docx、105分式方程解析版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。