模型38 梅涅劳斯定理、塞瓦定理(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用)
展开
梅涅劳斯定理:任何一条直线截三角形的各边,都使得三条不相邻线段之积等于另外三条线段之积.当直线交三角形ABC三边所在直线BC、AB、AC于D、E、F点时,则有AE×BD×CF=EB×CD×AF
塞瓦定理:塞瓦定理是指在△ABC内任取一点O,延长AO、BO、CO分别交对边于D、E、F,则 BD×CE×AF=DC×EA×FB.
声
考点一:梅涅劳斯定理
【例1】.如图,等边△ABC的边长为2,F为AB中点,延长BC至D,使CD=BC,连接FD交AC于E,则四边形BCEF的面积为 .
变式训练
【变式1-1】.如图,D、E、F内分正△ABC的三边AB、BC、AC均为1:2两部分,AD、BE、CF相交成的△PQR的面积是△ABC的面积的( )
A. B. C. D.
【变式1-2】.梅涅劳斯定理
梅涅劳斯(Menelaus)是古希腊数学家,他首先证明了梅涅劳斯定理,定理的内容是:如图(1),如果一条直线与△ABC的三边AB,BC,CA或它们的延长线交于F、D、E三点,那么一定有••=1.
下面是利用相似三角形的有关知识证明该定理的部分过程:
证明:如图(2),过点A作AG∥BC,交DF的延长线于点G,则有=.
任务:(1)请你将上述材料中的剩余的证明过程补充完整;
(2)如图(3),在△ABC中,AB=AC=13,BC=10,点D为BC的中点,点F在AB上,且BF=2AF,CF与AD交于点E,则AE= .
考点二:塞瓦定理
【例2】.如图:P,Q,R分别是△ABC的BC,CA,AB边上的点.若AP,BQ,CR相交于一点M,求证:.
变式训练
【变式2-1】.请阅读下列材料,并完成相应任务
如图,塞瓦定理是指在△ABC内任取一点O,延长AO,BO,CO分别交对边D,E,F于,则××=1.
任务:(1)当点D,E分别为边BC,AC的中点时,求证:点F为AB的中点;
(2)若△ABC为等边三角形,AB=12,AE=4,点D是BC边的中点,求BF的长.
【变式2-2】.请阅读下列材料,并完成相应任务
塞瓦定理 定理内容:如图1,塞瓦定理是指在△ABC内任取一点O,延长AO,BO,CO分别交对边于D,E,F,则. 数学意义:使用塞瓦定理可以进行直线形中线段长度比例的计算,其逆定理还可以用来进行三点共线、三线共点等问题的判定方法,是平面几何学以及射影几何学中的一项基本定理,具有重要的作用. |
任务解决:
(1)如图2,当点D,E分别为边BC,AC的中点时,求证:点F为AB的中点;
(2)若△ABC为等边三角形(如图3),AB=12,AE=4,点D是BC边的中点,求BF的长,并直接写出△BOF的面积.
1.如图,在△ABC中,M是AC的中点,E是AB上一点,AE=AB,连接EM并延长,交BC的延长线于D,则=( )
A. B.2 C. D.
2.如图,在△ABC中,D、E分别是BC、AC上的点,AD与BE相交于点G,若AG:GD=4:1,BD:DC=2:3,则AE:EC的值是( )
A. B. C. D.
3.如图,在△ABC中,AD是BC边上的中线,F是AD边上一点.射线CF交AB于点E,且,则等于 .
4.如图,在△ABC中,点D是AB边上的一点,且AD=3BD,连接CD并取CD的中点E,连接BE,若∠ACD=∠BED=45°,且CD=6,则AB的长为 .
5.如图,在△ABC中,∠ACB=90°,AC=8,BC=16,AD是边BC的中线,过点C作CE⊥AD于点E,连接BE并延长交AC于点F,则AD的长是 ,EF的长是 .
6.如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD、AE于H、G,则BH:HG:GM等于 .
7.如图,▱ABCD的对角线相交于点O,在AB的延长线上任取一点E,连接OE交BC于点F.若AB=a,AD=c,BE=b,则BF= .
8.在△ABC中,∠ACB=90°,AC=BC,AM为BC边上的中线,CD⊥AM于点D,CD的延长线交于点,求的值.
9.如图,在△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC,求BN:NQ:QM的值.
10.如图,△ABC中,∠ACB=90°,CD⊥AB于点D,E为BC上一点,AE交CD于点F,EH⊥AB于点H,若CF=2FD,EH=,求CE•BE的值.
11.如图,△ABC中,AD⊥BC于点D,E是AB上一点,连接DE,2∠C+∠BDE=180°.
(1)求证:∠BDE=2∠CAD;
(2)若AC=BD,∠AED=∠ACB,求证BE=2CD;
(3)若AE=kBE,BD=mCD,则的值为 . (用含m,k的式子表示).
12.如图1,Rt△ABC中,∠BAC=90°,AD是中线,BE⊥AD,垂足为E,点F在AD上,∠ACF=∠DBE.
(1)求证:∠ABD=∠CFD;
(2)探究线段AF,DE的数量关系,并证明你的结论;
(3)如图2,延长BE交CF于点P,AB=AF,求的值.
13.如图1,△ABC中,AB=AC,点D在BA的延长线上,点E在BC上,DE=DC,点F是DE与AC的交点,且DF=FE.
(1)图1中是否存在与∠BDE相等的角?若存在,请找出,并加以证明,若不存在,说明理由;
(2)求证:BE=EC;
(3)若将“点D在BA的延长线上,点E在BC上”和“点F是DE与AC的交点,且DF=FE”分别改为“点D在AB上,点E在CB的延长线上”和“点F是ED的延长线与AC的交点,且DF=kFE”,其他条件不变(如图2).当AB=1,∠ABC=a时,求BE的长(用含k、a的式子表示).
14.阅读以下材料,并按要求完成相应的任务.
塞瓦(GiovanniCeva,1648~1734)意大利水利工程师,数学家,塞瓦定理载于1678年发表的《直线论》一书,塞瓦定理是指如图1,在△ABC内任取一点O,延长AO,BO,CO分别交对边于D,F,E,则.
下面是该定理的部分证明过程:
如图2,过点A作BC的平行线分别交BE,CF的延长线于点M,N.则∠N=∠FCB,∠NAF=∠FBC.
∴△NAF∽△CBF.
∴①.
同理可得△NOA∽△COD.
∴②.
任务一:
(1)请分别写出与△MOA,△MEA相似的三角形;
(2)写出由(1)得到的比例线段;
任务二:结合①②和(2),完成该定理的证明;
任务三:如图3,△ABC中,∠ACB=90°,AC=4,BC=3,CD⊥AB,垂足为D,点E为DC的中点,连接AE并延长,交BC于点F,连接BE并延长,交AC于点G.小明同学自学了上面定理之后解决了如图3所示的问题,并且他用所学知识已经求出了BF与FC的比是25:16,请你直接写出△ECG与△EAG面积的比.
15.问题提出
如图(1),在△ABC中,AB=AC,D是AC的中点,延长BC至点E,使DE=DB,延长ED交AB于点F,探究的值.
问题探究
(1)先将问题特殊化.如图(2),当∠BAC=60°时,直接写出的值;
(2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.
问题拓展
如图(3),在△ABC中,AB=AC,D是AC的中点,G是边BC上一点,=(n<2),延长BC至点E,使DE=DG,延长ED交AB于点F.直接写出的值(用含n的式子表示).
16.阅读下面材料,完成(1)﹣(3)题
数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自己的想法:
小明:“通过观察和度量,发现∠BAE与∠DAC相等.”
小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”
……
老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值.”
(1)求证:∠BAE=∠DAC;
(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;
(3)直接写出的值(用含k的代数式表示).
专题21 相似模型之梅涅劳斯(定理)模型与塞瓦(定理)模型-备战2024年中考数学常见模型题型归纳与总结高分突破(全国通用): 这是一份专题21 相似模型之梅涅劳斯(定理)模型与塞瓦(定理)模型-备战2024年中考数学常见模型题型归纳与总结高分突破(全国通用),文件包含专题21相似模型之梅涅劳斯定理模型与塞瓦定理模型原卷版docx、专题21相似模型之梅涅劳斯定理模型与塞瓦定理模型解析版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
专题21 相似模型之梅涅劳斯(定理)模型与塞瓦(定理)模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用): 这是一份专题21 相似模型之梅涅劳斯(定理)模型与塞瓦(定理)模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用),文件包含专题21相似模型之梅涅劳斯定理模型与塞瓦定理模型原卷版docx、专题21相似模型之梅涅劳斯定理模型与塞瓦定理模型解析版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
模型47 勾股定理之大树折断、风吹荷花模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用): 这是一份模型47 勾股定理之大树折断、风吹荷花模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用),文件包含模型47勾股定理之大树折断风吹荷花模型原卷版docx、模型47勾股定理之大树折断风吹荷花模型解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。