高考数学 圆锥曲线解答题专练(含答案解析)
展开
这是一份高考数学 圆锥曲线解答题专练(含答案解析),共13页。试卷主要包含了5,0等内容,欢迎下载使用。
2020年高考数学 圆锥曲线解答题专练5.91.已知椭圆C:+=1(a>b>0)的离心率为,左焦点为F(-1,0),过点D(0,2)且斜率为k的直线l交椭圆于A,B两点.(1)求椭圆C的标准方程;(2)在y轴上,是否存在定点E,使·恒为定值?若存在,求出E点的坐标和这个定值;若不存在,说明理由. 2.已知椭圆C:+=1(a>b>0)的长轴长为4,其上顶点到直线3x+4y-1=0的距离等于.(1)求椭圆C的方程;(2)若直线l与椭圆C交于A,B两点,交x轴的负半轴于点E,交y轴于点F(点E,F都不在椭圆上),且=λ1,=λ2,λ1+λ2=-8,证明:直线l恒过定点,并求出该定点. 3.已知抛物线C:y2=2px经过点P(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.(1)求直线l的斜率的取值范围;(2)设O为原点,=λ,=μ,求证:+为定值. 4.已知椭圆C:+=1(a>b>0)的右焦点F(,0),长半轴长与短半轴长的比值为2.(1)求椭圆C的标准方程;(2)设不经过点B(0,1)的直线l与椭圆C相交于不同的两点M,N,若点B在以线段MN为直径的圆上,证明直线l过定点,并求出该定点的坐标. 5.如图,椭圆C:+=1(a>b>0)的左顶点与上顶点分别为A,B,右焦点为F,点P在椭圆C上,且PF⊥x轴,若AB∥OP,且|AB|=2.(1)求椭圆C的方程;(2)已知Q是C上不同于长轴端点的任意一点,在x轴上是否存在一点D,使得直线QA与QD的斜率乘积恒为-,若存在,求出点D的坐标,若不存在,说明理由. 6.已知椭圆C:+=1(a>b>0)的焦距为4,P是椭圆C上的点.(1)求椭圆C的方程;(2)O为坐标原点,A,B是椭圆C上不关于坐标轴对称的两点,设=+,证明:直线AB的斜率与OD的斜率的乘积为定值. 7.在平面直角坐标系中,直线x-y+m=0不过原点,且与椭圆+=1有两个不同的公共点A,B.(1)求实数m的取值所组成的集合M;(2)是否存在定点P使得任意的m∈M,都有直线PA,PB的倾斜角互补?若存在,求出所有定点P的坐标;若不存在,请说明理由. 8.已知椭圆C:的离心率为,且经过点(1.5,0.5). (1)求椭圆C的方程; (2)过点P(0,2)的直线交椭圆C于A,B两点,求△AOB(O为原点)面积的最大值. 9.已知椭圆的离心率为,且点P(2,1)为椭圆上一点.(1)求椭圆的标准方程;(2)若直线的斜率为,直线与椭圆C交于A,B两点,求△PAB的面积的最大值. 10.已知椭圆C1:+=1(a>b≥1)的离心率为,其右焦点到直线2ax+by-=0的距离为.(1)求椭圆C1的方程;(2)过点P的直线l交椭圆C1于A,B两点.证明:以AB为直径的圆恒过定点. 11.已知点M是椭圆C:+=1(a>b>0)上一点,F1,F2分别为C的左、右焦点,|F1F2|=4,∠F1MF2=60°,△F1MF2的面积为.(1)求椭圆C的方程;(2)设N(0,2),过点P(-1,-2)作直线l,交椭圆C于异于N的A,B两点,直线NA,NB的斜率分别为k1,k2,证明:k1+k2为定值. 12.已知椭圆C的中心在原点,离心率等于,它的一个短轴端点恰好是抛物线x2=8y的焦点.(1)求椭圆C的方程;(2)如图,已知P(2,3),Q(2,-3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点.①若直线AB的斜率为,求四边形APBQ面积的最大值;②当A,B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值?请说明理由.
答案解析1.解:(1)由已知可得可得a2=2,b2=1,所以椭圆C的标准方程为+y2=1.(2)设过点D(0,2)且斜率为k的直线l的方程为y=kx+2,由消去y整理得(1+2k2)x2+8kx+6=0,设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=.又y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4=-,y1+y2=(kx1+2)+(kx2+2)=k(x1+x2)+4=.设存在点E(0,m),则=(-x1,m-y1),=(-x2,m-y2),所以·=x1x2+m2-m(y1+y2)+y1y2=+m2-m×-=.要使·=t(t为常数),只需=t,从而(2m2-2-2t)k2+m2-4m+10-t=0,即解得m=,从而t=,故存在定点E,使·恒为定值. 2.解:(1)由椭圆C的长轴长为4知2a=4,故a=2,椭圆的上顶点为(0,b),则由=得b=1,所以椭圆C的方程为+y2=1.(2)设A(x1,y1),E(m,0)(m<0,m≠-2),F(0,n),由=λ1,得(x1,y1-n)=λ1(m-x1,-y1),所以A.同理由=λ2,得B,把A,B分别代入+y2=1得:即λ1,λ2是关于x的方程(4-m2)x2+8x+4-4n2=0的两个根,∴λ1+λ2==-8,∴m=-,所以直线l恒过定点(-,0). 3.解:(1)因为抛物线y2=2px过点(1,2),所以2p=4,即p=2.故抛物线C的方程为y2=4x,由题意知,直线l的斜率存在且不为0.设直线l的方程为y=kx+1(k≠0).由得k2x2+(2k-4)x+1=0.依题意Δ=(2k-4)2-4×k2×1>0,解得k<0或0<k<1.又PA,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(2)证明:设A(x1,y1),B(x2,y2),由(1)知x1+x2=-,x1x2=.直线PA的方程为y-2=(x-1).令x=0,得点M的纵坐标为yM=+2=+2.同理得点N的纵坐标为yN=+2.由=λ,=μ得λ=1-yM,μ=1-yN.所以+=+=+=·=·=2.所以+为定值. 4.解:(1)由题意得,c=,=2,a2=b2+c2,∴a=2,b=1,∴椭圆C的标准方程为+y2=1.(2)证明:当直线l的斜率存在时,设直线l的方程为y=kx+m(m≠1),M(x1,y1),N(x2,y2).由消去y可得(4k2+1)x2+8kmx+4m2-4=0.∴Δ=16(4k2+1-m2)>0,x1+x2=,x1x2=.∵点B在以线段MN为直径的圆上,∴·=0.∵·=(x1,kx1+m-1)·(x2,kx2+m-1)=(k2+1)x1x2+k(m-1)(x1+x2)+(m-1)2=0,∴(k2+1)+k(m-1)+(m-1)2=0,整理,得5m2-2m-3=0,解得m=-或m=1(舍去).∴直线l的方程为y=kx-.易知当直线l的斜率不存在时,不符合题意.故直线l过定点,且该定点的坐标为. 5.解:(1)由题意得A(-a,0),B(0,b),可设P(c,t)(t>0),∴+=1,得t=,即P,由AB∥OP得=,即b=c,∴a2=b2+c2=2b2,①又|AB|=2,∴a2+b2=12,②由①②得a2=8,b2=4,∴椭圆C的方程为+=1.(2)假设存在D(m,0),使得直线QA与QD的斜率乘积恒为-,设Q(x0,y0)(y0≠0),则+=1,③∵kQA·kQD=-,A(-2,0),∴·=-(x0≠m),④由③④得(m-2)x0+2m-8=0,即解得m=2,∴存在点D(2,0),使得kQA·kQD=-. 6.解:(1)由题意知2c=4,即c=2,则椭圆C的方程为+=1,因为点P在椭圆C上,所以+=1,解得a2=5或a2=(舍去),所以椭圆C的方程为+y2=1.(2)设A(x1,y1),B(x2,y2),x1≠x2且x1+x2≠0,由+=,得D(x1+x2,y1+y2),所以直线AB的斜率kAB=,直线OD的斜率kOD=,由得(x1+x2)(x1-x2)+(y1+y2)(y1-y2)=0,即·=-,所以kAB·kOD=-.故直线AB的斜率与OD的斜率的乘积为定值-. 7.解:(1)因为直线x-y+m=0不过原点,所以m≠0.将x-y+m=0与+=1联立,消去y,得4x2+2mx+m2-4=0.因为直线与椭圆有两个不同的公共点A,B,所以Δ=8m2-16(m2-4)>0,所以-2<m<2.故实数m的取值所组成的集合M为(-2,0)∪(0,2).(2)假设存在定点P(x0,y0)使得任意的m∈M,都有直线PA,PB的倾斜角互补,即kPA+kPB=0.令A(x1,x1+m),B(x2,x2+m),则+=0,整理得2x1x2+(m-x0-y0)(x1+x2)+2x0(y0-m)=0.(*)由(1)知x1+x2=-,x1x2=,代入(*)式化简得m+2(x0y0-)=0,则解得或所以定点P的坐标为(1,)或(-1,-).经检验,此两点均满足题意.故存在定点P使得任意的m∈M,都有直线PA,PB的倾斜角互补,且定点P的坐标为(1,)或(-1,-). 8. 9.解: 10.解:(1)由题意,e==,e2==,a2=2b2.所以a=b,c=b.又=,a>b≥1,所以b=1,a2=2,故椭圆C1的方程为+y2=1.(2)证明:当AB⊥x轴时,以AB为直径的圆的方程为x2+y2=1.当AB⊥y轴时,以AB为直径的圆的方程为x2+2=,由可得由此可知,若以AB为直径的圆恒过定点,则该定点必为Q(0,1).下证Q(0,1)符合题意.当AB不垂直于坐标轴时,设直线AB方程为y=kx-,A(x1,y1),B(x2,y2).由得(1+2k2)x2-kx-=0,由根与系数的关系得,x1+x2=,x1x2=-,∴·=(x1,y1-1)·(x2,y2-1)=x1x2+(y1-1)(y2-1)=x1x2+=(1+k2)x1x2-k(x1+x2)+=(1+k2)-k·+==0,故⊥,即Q(0,1)在以AB为直径的圆上.综上,以AB为直径的圆恒过定点(0,1). 11.解:(1)在△F1MF2中,由|MF1||MF2|sin 60°=,得|MF1||MF2|=.由余弦定理,得|F1F2|2=|MF1|2+|MF2|2-2|MF1|·|MF2|cos 60°=(|MF1|+|MF2|)2-2|MF1|·|MF2|(1+cos 60°),从而2a=|MF1|+|MF2|=4,即a=2,从而b=2,故椭圆C的方程为+=1.(2)当直线l的斜率存在时,设其方程为y+2=k(x+1),由得(1+2k2)x2+4k(k-2)x+2k2-8k=0.设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=.从而k1+k2=+==2k-(k-4)=4.当直线l的斜率不存在时,可取A,B,得k1+k2=4.综上,恒有k1+k2=4. 12.解:(1)设椭圆C的方程为+=1(a>b>0),则b=2.由=,a2=c2+b2,得a=4,∴椭圆C的方程为+=1.(2)设A(x1,y1),B(x2,y2).①设直线AB的方程为y=x+t,代入+=1,得x2+tx+t2-12=0,由Δ>0,解得-4<t<4,由一元二次方程根与系数的关系得x1+x2=-t,x1x2=t2-12,∴|x1-x2|===.∴四边形APBQ的面积S=×6×|x1-x2|=3.∴当t=0时,S取得最大值,且Smax=12.②若∠APQ=∠BPQ,则直线PA,PB的斜率之和为0,设直线PA的斜率为k,则直线PB的斜率为-k,直线PA的方程为y-3=k(x-2),由得(3+4k2)x2+8(3-2k)kx+4(3-2k)2-48=0,∴x1+2=,将k换成-k可得x2+2==,∴x1+x2=,x1-x2=,∴kAB====,∴直线AB的斜率为定值.
相关试卷
这是一份新高考数学培优专练05 圆锥曲线中的定点问题,文件包含专题05圆锥曲线中的定点问题原卷版docx、专题05圆锥曲线中的定点问题教师版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。
这是一份新高考数学培优专练04 圆锥曲线中的范围问题,文件包含专题04圆锥曲线中的范围问题学生版docx、专题04圆锥曲线中的范围问题教师版docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。
这是一份新高考数学培优专练02 圆锥曲线中的面积问题,文件包含专题02圆锥曲线中的面积问题原卷版docx、专题02圆锥曲线中的面积问题教师版docx等2份试卷配套教学资源,其中试卷共66页, 欢迎下载使用。