![2012年全国初中数学联合竞赛试题及详细解答(含一试二试)01](http://www.enxinlong.com/img-preview/2/3/14749479/0-1692768837710/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2012年全国初中数学联合竞赛试题及详细解答(含一试二试)02](http://www.enxinlong.com/img-preview/2/3/14749479/0-1692768837774/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2012年全国初中数学联合竞赛试题及详细解答(含一试二试)03](http://www.enxinlong.com/img-preview/2/3/14749479/0-1692768837798/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2012年全国初中数学联合竞赛试题及详细解答(含一试二试)
展开2012年全国初中数学联合竞赛试题参考答案
第一试
一、选择题:(本题满分42分,每小题7分)
1.已知,,,那么的大小关系是 ( )
A. B. C. D.
2.方程的整数解的组数为 ( )
A.3. B.4. C.5. D.6.
3.已知正方形ABCD的边长为1,E为BC边的延长线上一点,CE=1,连接AE,与CD交于点F,连接BF并延长与线段DE交于点G,则BG的长为 ( )
A. B. C. D.
4.已知实数满足,则的最小值为 ( )
A.. B.0. C.1. D..
5.若方程的两个不相等的实数根满足,则实数的所有可能的值之和为 ( )
A.0. B.. C.. D..
6.由1,2,3,4这四个数字组成四位数(数字可重复使用),要求满足.这样的四位数共有 ( )
A.36个. B.40个. C.44个. D.48个.
二、填空题:(本题满分28分,每小题7分)
1.已知互不相等的实数满足,则 .
2.使得是完全平方数的整数的个数为 .
3.在△ABC中,已知AB=AC,∠A=40°,P为AB上一点,∠ACP=20°,则= .
4.已知实数满足,,,则= .
第二试 (A)
一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积.
二.(本题满分25分)如图,PA为⊙O的切线,PBC为⊙O的割线,AD⊥OP于点D.证明:.
三.(本题满分25分)已知抛物线的顶点为P,与轴的正半轴交于A、B()两点,与轴交于点C,PA是△ABC的外接圆的切线.设M,若AM//BC,求抛物线的解析式.
第二试 (B)
一.(本题满分20分)已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积.
二.(本题满分25分)如图,PA为⊙O的切线,PBC为⊙O的割线,AD⊥OP于点D,△ADC的外接圆与BC的另一个交点为E.证明:∠BAE=∠ACB.
三.(本题满分25分)题目和解答与(A)卷第三题相同.
第二试 (C)
一.(本题满分20分)题目和解答与(B)卷第一题相同.
二.(本题满分25分)题目和解答与(B)卷第二题相同.
三.(本题满分25分)已知抛物线的顶点为P,与轴的正半轴交于A、B()两点,与轴交于点C,PA是△ABC的外接圆的切线.将抛物线向左平移个单位,得到的新抛物线与原抛物线交于点Q,且∠QBO=∠OBC.求抛物线的解析式.
2012年全国初中数学联合竞赛试题参考答案
第一试
一、选择题:(本题满分42分,每小题7分)
1.已知,,,那么的大小关系是 ( C )
A. B. C. D.
2.方程的整数解的组数为 ( B )
A.3. B.4. C.5. D.6.
3.已知正方形ABCD的边长为1,E为BC边的延长线上一点,CE=1,连接AE,与CD交于点F,连接BF并延长与线段DE交于点G,则BG的长为 ( D )
A. B. C. D.
4.已知实数满足,则的最小值为 ( B )
A.. B.0. C.1. D..
5.若方程的两个不相等的实数根满足,则实数的所有可能的值之和为 ( B )
A.0. B.. C.. D..
6.由1,2,3,4这四个数字组成四位数(数字可重复使用),要求满足.这样的四位数共有 ( C )
A.36个. B.40个. C.44个. D.48个.
解:根据使用的不同数字的个数分类考虑:
(1)只用1个数字,组成的四位数可以是1111,2222,3333,4444,共有4个.
(2)使用2个不同的数字,使用的数字有6种可能(1、2,1、3,1、4,2、3,2、4,3、4).
如果使用的数字是1、2,组成的四位数可以是1122,1221,2112,2211,共有4个;
同样地,如果使用的数字是另外5种情况,组成的四位数也各有4个.
因此,这样的四位数共有6×4=24个.
(3)使用3个不同的数字,只能是1、2、2、3或2、3、3、4,组成的四位数可以是1232,2123,2321,3212,2343,3234,3432,4323,共有8个.
(4)使用4个不同的数字1,2,3,4,组成的四位数可以是1243,1342,2134,2431,3124,3421,4213,4312,共有8个.
因此,满足要求的四位数共有4+24+8+8=44个.
故选C.
二、填空题:(本题满分28分,每小题7分)
1.已知互不相等的实数满足,则.
2.使得是完全平方数的整数的个数为 1 .
3.在△ABC中,已知AB=AC,∠A=40°,P为AB上一点,∠ACP=20°,则=.
4.已知实数满足,,,则=.
第二试 (A)
一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积.
解 设直角三角形的三边长分别为(),则.
显然,三角形的外接圆的直径即为斜边长,下面先求的值.
由及得,所以.
由及得,所以.
又因为为整数,所以.
根据勾股定理可得,把代入,化简得,所以
,
因为均为整数且,所以只可能是解得
所以,直角三角形的斜边长,三角形的外接圆的面积为.
二.(本题满分25分)如图,PA为⊙O的切线,PBC为⊙O的割线,AD⊥OP于点D.证明:.
证明:连接OA,OB,OC.
∵OA⊥AP,AD⊥OP,∴由射影定理可得,.
又由切割线定理可得,∴,∴D、B、C、O四点共圆,
∴∠PDB=∠PCO=∠OBC=∠ODC,∠PBD=∠COD,∴△PBD∽△COD,
∴,∴.
三.(本题满分25分)已知抛物线的顶点为P,与轴的正半轴交于A、B()两点,与轴交于点C,PA是△ABC的外接圆的切线.设M,若AM//BC,求抛物线的解析式.
解 易求得点P,点C.
设△ABC的外接圆的圆心为D,则点P和点D都在线段AB的垂直平分线上,设点D的坐标为.
显然,是一元二次方程的两根,所以,,又AB的中点E的坐标为,所以AE=.
因为PA为⊙D的切线,所以PA⊥AD,又AE⊥PD,所以由射影定理可得,即,又易知,所以可得.
又由DA=DC得,即,把代入后可解得(另一解舍去).
又因为AM//BC,所以,即.
把代入解得(另一解舍去).
因此,抛物线的解析式为.
第二试 (B)
一.(本题满分20分)已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积.
解 设直角三角形的三边长分别为(),则.
显然,三角形的外接圆的直径即为斜边长,下面先求的值.
由及得,所以.
由及得,所以.
又因为为整数,所以.
根据勾股定理可得,把代入,化简得,所以
,
因为均为整数且,所以只可能是或
解得或
当时,,三角形的外接圆的面积为;
当时,,三角形的外接圆的面积为.
二.(本题满分25分)如图,PA为⊙O的切线,PBC为⊙O的割线,AD⊥OP于点D,△ADC的外接圆与BC的另一个交点为E.证明:∠BAE=∠ACB.
证明:连接OA,OB,OC,BD.
∵OA⊥AP,AD⊥OP,∴由射影定理可得
,.
又由切割线定理可得,
∴,∴D、B、C、O四点共圆,
∴∠PDB=∠PCO=∠OBC=∠ODC,
∠PBD=∠COD,∴△PBD∽△COD, ∴,
∴,∴.
又∠BDA=∠BDP+90°=∠ODC+90°=∠ADC,∴△BDA∽△ADC,
∴∠BAD=∠ACD,∴AB是△ADC的外接圆的切线,∴∠BAE=∠ACB.
三.(本题满分25分)题目和解答与(A)卷第三题相同.
第二试 (C)
一.(本题满分20分)题目和解答与(B)卷第一题相同.
二.(本题满分25分)题目和解答与(B)卷第二题相同.
三.(本题满分25分)已知抛物线的顶点为P,与轴的正半轴交于A、B()两点,与轴交于点C,PA是△ABC的外接圆的切线.将抛物线向左平移个单位,得到的新抛物线与原抛物线交于点Q,且∠QBO=∠OBC.求抛物线的解析式.
解 抛物线的方程即,所以点P,点C.
设△ABC的外接圆的圆心为D,则点P和点D都在线段AB的垂直平分线上,设点D的坐标为.
显然,是一元二次方程的两根,所以,,又AB的中点E的坐标为,所以AE=.
因为PA为⊙D的切线,所以PA⊥AD,又AE⊥PD,所以由射影定理可得,即,又易知,所以可得.
又由DA=DC得,即,把代入后可解得(另一解舍去).
将抛物线向左平移个单位后,得到的新抛物线为
.
易求得两抛物线的交点为Q.
由∠QBO=∠OBC可得∠QBO=∠OBC.
作QN⊥AB,垂足为N,则N,又,所以
∠QBO==
.
又∠OBC=,所以
.
解得(另一解,舍去).
因此,抛物线的解析式为.
2017年全国初中数学联合竞赛试题及详细解答(含一试二试): 这是一份2017年全国初中数学联合竞赛试题及详细解答(含一试二试),共12页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
2015年全国初中数学联合竞赛试题及详细解答(含一试二试): 这是一份2015年全国初中数学联合竞赛试题及详细解答(含一试二试),共12页。
2014年全国初中数学联合竞赛试题及详细解答(含一试二试): 这是一份2014年全国初中数学联合竞赛试题及详细解答(含一试二试),共9页。试卷主要包含了已知非负实数满足,则的最大值为等内容,欢迎下载使用。