- 2023年广东省中考数学试卷 试卷 1 次下载
- 2023年广西中考数学试卷 试卷 2 次下载
- 2023年河北省中考数学试卷 试卷 0 次下载
- 2023年河南省中考数学试卷 试卷 0 次下载
- 2023年黑龙江省大庆市中考数学试卷 试卷 0 次下载
2023年贵州省中考数学试卷
展开2023年贵州省中考数学试卷
一、选择题(每小题3分,共36分.每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置填涂)
1.(3分)5的绝对值是( )
A.±5 B.5 C.﹣5 D.
2.(3分)如图所示的几何体,从正面看,得到的平面图形是( )
A. B.
C. D.
3.(3分)据中国经济网资料显示,今年一季度全国居民人均可支配收入平稳增长,全国居民人均可支配收入为10870元.10870这个数用科学记数法表示正确的是( )
A.0.1087×105 B.1.087×104 C.1.087×103 D.10.87×103
4.(3分)如图,AB∥CD,AC与BD相交于点E.若∠C=40°,则∠A的度数是( )
A.39° B.40° C.41° D.42°
5.(3分)化简结果正确的是( )
A.1 B.a C. D.
6.(3分)“石阡苔茶”是贵州十大名茶之一,在我国传统节日清明节前后,某茶叶经销商对甲、乙、丙、丁四种包装的苔茶(售价、利润均相同)在一段时间内的销售情况统计如下表,最终决定增加乙种包装苔茶的进货数量,影响经销商决策的统计量是( )
包装
甲
乙
丙
丁
销售量(盒)
15
22
18
10
A.中位数 B.平均数 C.众数 D.方差
7.(3分)5月26日,“2023中国国际大数据产业博览会”在贵阳开幕,在“自动化立体库”中有许多几何元素,其中有一个等腰三角形模型(示意图如图所示),它的顶角为120°,腰长为12m,则底边上的高是( )
A.4m B.6m C.10m D.12m
8.(3分)在学校科技宣传活动中,某科技活动小组将3个标有“北斗”,2个标有“天眼”,5个标有“高铁”的小球(除标记外其它都相同)放入盒中,小红从盒中随机摸出1个小球,并对小球标记的内容进行介绍,下列叙述正确的是( )
A.摸出“北斗”小球的可能性最大
B.摸出“天眼”小球的可能性最大
C.摸出“高铁”小球的可能性最大
D.摸出三种小球的可能性相同
9.(3分)《孙子算经》中有这样一道题,大意为:今有100头鹿,每户分一头鹿后,还有剩余,将剩下的鹿按每3户共分一头,恰好分完,问:有多少户人家?若设有x户人家,则下列方程正确的是( )
A. B.3x+1=100 C. D.
10.(3分)已知,二次函数y=ax2+bx+c的图象如图所示,则点P(a,b)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
11.(3分)如图,在四边形ABCD中,AD∥BC,BC=5,CD=3.按下列步骤作图:①以点D为圆心,适当长度为半径画弧,分别交DA,DC于E,F两点;②分别以点E,F为圆心以大于的长为半径画弧,两弧交于点P;③连接DP并延长交BC于点G.则BG的长是( )
A.2 B.3 C.4 D.5
12.(3分)今年“五一”假期,小星一家驾车前往黄果树旅游,在行驶过程中,汽车离黄果树景点的路程y(km)与所用时间x(h)之间的函数关系的图象如图所示,下列说法正确的是( )
A.小星家离黄果树景点的路程为50km
B.小星从家出发第1小时的平均速度为75km/h
C.小星从家出发2小时离景点的路程为125km
D.小星从家到黄果树景点的时间共用了3h
二、填空题(每小题4分,共16分)
13.(4分)因式分解:x2﹣4= .
14.(4分)如图,是贵阳市城市轨道交通运营部分示意图,以喷水池为原点,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,若贵阳北站的坐标是(﹣2,7),则龙洞堡机场的坐标是 .
15.(4分)若一元二次方程kx2﹣3x+1=0有两个相等的实数根,则k的值是 .
16.(4分)如图,在矩形ABCD中,点E为矩形内一点,且AB=1,AD=,∠BAE=75°,∠BCE=60°,则四边形ABCE的面积是 .
三、解答题(本大题共9题,共98分,解答应写出必要的文字说明、证明过程或演算步骤)
17.(10分)(1)计算:;
(2)已知,A=a﹣1,B=﹣a+3.若A>B,求a的取值范围.
18.(10分)为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:
某校学生一周体育锻炼调查问卷
以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小于4)
问题:你平均每周体育锻炼的时间大约是
A.0~4小时 B.4~6小时
C.6~8小时 D.8~小时及以上
问题2:你体育镀炼的动力是
E.家长要求F.学校要求
G.自己主动H.其他
(1)参与本次调查的学生共有 人,选择“自己主动”体育锻炼的学生有 人;
(2)已知该校有2600名学生,若每周体育锻炼8小时以上(含8小时)可评为“运动之星”,请估计全校可评为“运动之星”的人数;
(3)请写出一条你对同学体育锻炼的建议.
19.(10分)为推动乡村振兴,政府大力扶持小型企业.根据市场需求,某小型企业为加快生产速度,需要更新生产设备,更新设备后生产效率比更新前提高了25%,设更新设备前每天生产x件产品.解答下列问题:
(1)更新设备后每天生产 件产品(用含x的式子表示);
(2)更新设备前生产5000件产品比更新设备后生产6000件产品多用2天,求更新设备后每天生产多少件产品.
20.(10分)如图,在Rt△ABC中,∠C=90°,延长CB至D,使得BD=CB,过点A,D分别作AE∥BD,DE∥BA,AE与DE相交于点E.下面是两位同学的对话:
小星:由题目的已知条件,若连接BE,则可
证明BE⊥CD.
小红:由题目的已知条件,若连接CE,则可证明CE=DE.
(1)请你选择一位同学的说法,并进行证明;
(2)连接AD,若,求AC的长.
21.(10分)如图,在平面直角坐标系中,四边形OABC是矩形,反比例函数的图象分别与AB,BC交于点D(4,1)和点E,且点D为AB的中点.
(1)求反比例函数的表达式和点E的坐标;
(2)若一次函数y=x+m与反比例函数的图象相交于点M,当点M在反比例函数图象上D,E之间的部分时(点M可与点D,E重合),直接写出m的取值范围.
22.(12分)贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A为起点,沿途修建AB、CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC为50m.索道AB与AF的夹角为15°,CD与水平线夹角为45°,A、B两处的水平距离AE为576m,DF⊥AF,垂足为点F.(图中所有点都在同一平面内,点A、E、F在同一水平线上)
(1)求索道AB的长(结果精确到1m);
(2)求水平距离AF的长(结果精确到1m).
(参考数据:sin15°≈0.25,cos15°≈0.96,tan15°≈0.26,)
23.(12分)如图,已知⊙O是等边三角形ABC的外接圆,连接CO并延长交AB于点D,交⊙O于点E,连接EA,EB.
(1)写出图中一个度数为30°的角: ,图中与△ACD全等的三角形是 ;
(2)求证:△AED∽△CEB;
(3)连接OA,OB,判断四边形OAEB的形状,并说明理由.
24.(12分)如图①,是一座抛物线型拱桥,小星学习二次函数后,受到该图启示设计了一建筑物造型,它的截面图是抛物线的一部分(如图②所示),抛物线的顶点在C处,对称轴OC与水平线OA垂直,OC=9,点A在抛物线上,且点A到对称轴的距离OA=3,点B在抛物线上,点B到对称轴的距离是1.
(1)求抛物线的表达式;
(2)如图②,为更加稳固,小星想在OC上找一点P,加装拉杆PA,PB,同时使拉杆的长度之和最短,请你帮小星找到点P的位置并求出坐标;
(3)为了造型更加美观,小星重新设计抛物线,其表达式为y=﹣x2+2bx+b﹣1(b>0),当4≤x≤6时,函数y的值总大于等于9.求b的取值范围.
25.(12分)如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC中,CA=CB,∠C=90°,过点B作射线BD⊥AB,垂足为B,点P在CB上.
(1)【动手操作】
如图②,若点P在线段CB上,画出射线PA,并将射线PA绕点P逆时针旋转90°与BD交于点E,根据题意在图中画出图形,图中∠PBE的度数为 度;
(2)【问题探究】
根据(1)所画图形,探究线段PA与PE的数量关系,并说明理由;
(3)【拓展延伸】
如图③,若点P在射线CB上移动,将射线PA绕点P逆时针旋转90°与BD交于点E,探究线段BA,BP,BE之间的数量关系,并说明理由.
2023年贵州省中考数学试卷
参考答案与试题解析
一、选择题(每小题3分,共36分.每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置填涂)
1.(3分)5的绝对值是( )
A.±5 B.5 C.﹣5 D.
【分析】根据绝对值的代数意义进行判断即可.
【解答】解:5的绝对值是5.
故选:B.
【点评】本题考查绝对值的代数意义,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.
2.(3分)如图所示的几何体,从正面看,得到的平面图形是( )
A. B.
C. D.
【分析】根据从正面看得到的图形是主视图,可得答案.
【解答】解:从正面看到的平面图形为等腰梯形.
故选:A.
【点评】本题考查了简单几何体的三视图,解题时注意从正面看得到的图形是主视图.
3.(3分)据中国经济网资料显示,今年一季度全国居民人均可支配收入平稳增长,全国居民人均可支配收入为10870元.10870这个数用科学记数法表示正确的是( )
A.0.1087×105 B.1.087×104 C.1.087×103 D.10.87×103
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【解答】解:10870=1.087×104.
故选:B.
【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4.(3分)如图,AB∥CD,AC与BD相交于点E.若∠C=40°,则∠A的度数是( )
A.39° B.40° C.41° D.42°
【分析】根据两直线平行,内错角相等即可求出∠A的度数.
【解答】解:∵AB∥CD,
∴∠A=∠C,
∵∠C=40°,
∴∠A=40°,
故选:B.
【点评】本题考查了平行线的性质,熟知:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.
5.(3分)化简结果正确的是( )
A.1 B.a C. D.
【分析】依据题意,根据分式的加减运算法则进行计算即可得解.
【解答】解:由题意,原式===1.
故选:A.
【点评】本题主要考查分式的加减运算,解题时需要熟练掌握法则并能准确计算.
6.(3分)“石阡苔茶”是贵州十大名茶之一,在我国传统节日清明节前后,某茶叶经销商对甲、乙、丙、丁四种包装的苔茶(售价、利润均相同)在一段时间内的销售情况统计如下表,最终决定增加乙种包装苔茶的进货数量,影响经销商决策的统计量是( )
包装
甲
乙
丙
丁
销售量(盒)
15
22
18
10
A.中位数 B.平均数 C.众数 D.方差
【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的苔茶就是这组数据的众数.
【解答】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.
故选:C.
【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
7.(3分)5月26日,“2023中国国际大数据产业博览会”在贵阳开幕,在“自动化立体库”中有许多几何元素,其中有一个等腰三角形模型(示意图如图所示),它的顶角为120°,腰长为12m,则底边上的高是( )
A.4m B.6m C.10m D.12m
【分析】作AD⊥BC于点 D,根据等腰三角形的性质和三角形内角和定理可得∠B=∠C=(180°﹣∠BAC)=30°,再根据含30度角的直角三角形的性质即可得出答案.
【解答】解:如图,作AD⊥BC于点D,
在△ABC中,∠BAC=120°,AB=AC,
∴∠B=∠C=(180°﹣∠BAC)=30°,
又∵AD⊥BC,
∴AD=AB=12=6(m),
故选:B.
【点评】本题考查等腰三角形的性质,三角形内角和定理,含30度角的直角三角形的性质等,解题关键是掌握30度角所对的直角边是斜边的一半.
8.(3分)在学校科技宣传活动中,某科技活动小组将3个标有“北斗”,2个标有“天眼”,5个标有“高铁”的小球(除标记外其它都相同)放入盒中,小红从盒中随机摸出1个小球,并对小球标记的内容进行介绍,下列叙述正确的是( )
A.摸出“北斗”小球的可能性最大
B.摸出“天眼”小球的可能性最大
C.摸出“高铁”小球的可能性最大
D.摸出三种小球的可能性相同
【分析】分别求出摸出三种小球的概率,再比较大小即可.
【解答】解:∵有3个标有“北斗”,2个标有“天眼”,5个标有“高铁”的小球,
∴小红从盒中随机摸出1个小球,摸出标有“北斗”的概率是=;
摸出标有“天眼”的概率是=;
摸出标有“高铁”的概率是=,
∵>>,
∴摸出标有“高铁”小球的可能性最大.
故选:C.
【点评】本题考查的是可能性的大小,根据题意求出摸出各种小球的概率是解题的关键.
9.(3分)《孙子算经》中有这样一道题,大意为:今有100头鹿,每户分一头鹿后,还有剩余,将剩下的鹿按每3户共分一头,恰好分完,问:有多少户人家?若设有x户人家,则下列方程正确的是( )
A. B.3x+1=100 C. D.
【分析】根据“今有100头鹿,每户分一头鹿后,还有剩余,将剩下的鹿按每3户共分一头,恰好分完”,即可列出关于x的一元一次方程,此题得解.
【解答】解:根据题意得:x+x=100.
故选:C.
【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.
10.(3分)已知,二次函数y=ax2+bx+c的图象如图所示,则点P(a,b)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【分析】根据二次函数的图象及性质判断a和b的符号,从而得出点P(a,b)所在的象限.
【解答】解:由二次函数的图象的开口方向向上,对称轴在y轴的右侧,
∴a>0,x=﹣>0,
∴b<0,
∴P(a,b)在第四象限.
故选:D.
【点评】本题考查了二次函数的图象与系数的关系以及判断点所占的象限,解答本题的关键是根据二次函数的图象判断出a、b的符号.
11.(3分)如图,在四边形ABCD中,AD∥BC,BC=5,CD=3.按下列步骤作图:①以点D为圆心,适当长度为半径画弧,分别交DA,DC于E,F两点;②分别以点E,F为圆心以大于的长为半径画弧,两弧交于点P;③连接DP并延长交BC于点G.则BG的长是( )
A.2 B.3 C.4 D.5
【分析】根据角平分线的定义以及平行四边形的性质,即可得到CG=CD,进而得到BG的长.
【解答】解:由题可得,CF是∠ACD的平分线,
∴∠ADG=∠CDG,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ADG=∠CGD,
∴∠CDG=∠CGD,
∴CG=CD=3,
∴BG=CB﹣CG=5﹣3=2.
故选:A.
【点评】本题主要考查了复杂作图,复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.掌握角平分线以及平行线的性质是解题的关键.
12.(3分)今年“五一”假期,小星一家驾车前往黄果树旅游,在行驶过程中,汽车离黄果树景点的路程y(km)与所用时间x(h)之间的函数关系的图象如图所示,下列说法正确的是( )
A.小星家离黄果树景点的路程为50km
B.小星从家出发第1小时的平均速度为75km/h
C.小星从家出发2小时离景点的路程为125km
D.小星从家到黄果树景点的时间共用了3h
【分析】根据函数图象得出的信息对4个选项进行分析.
【解答】解:根据图形与y轴交点坐标可得:小星家离黄果树景点的路程为200km,所以A不正确;
(200﹣150)÷1=50(km/h),小星从家出发第1小时的平均速度为50km/h,所以B不正确;
由图象可得:小星从家出发2小时离景点的路程为75km,所以C不正确;
(150﹣75)÷(2﹣1)=75(km/h),150÷75+1=3(h),所以D正确.
【点评】本题主要考查了函数图象的相关知识,难度不大,认真分析即可.
二、填空题(每小题4分,共16分)
13.(4分)因式分解:x2﹣4= (x+2)(x﹣2) .
【分析】直接利用平方差公式分解因式得出答案.
【解答】解:x2﹣4=(x+2)(x﹣2).
故答案为:(x+2)(x﹣2).
【点评】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.
14.(4分)如图,是贵阳市城市轨道交通运营部分示意图,以喷水池为原点,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,若贵阳北站的坐标是(﹣2,7),则龙洞堡机场的坐标是 (9,﹣4) .
【分析】确定平面直角坐标系,即可确定龙洞堡机场的坐标.
【解答】解:由题中条件确定点O即为平面直角坐标系原点,
龙洞堡机场的坐标为(9,﹣4);
故答案为:(9,﹣4).
【点评】本题考查根据已知条件确定平面直角坐标系,解题的关键是明确平面直角坐标系x轴、y轴的正方向以及确定点的坐标.
15.(4分)若一元二次方程kx2﹣3x+1=0有两个相等的实数根,则k的值是 .
【分析】结合已知条件,利用根的判别式及一元二次方程的定义即可求得答案.
【解答】解:∵一元二次方程kx2﹣3x+1=0有两个相等的实数根,
∴Δ=(﹣3)2﹣4k×1=0,且k≠0,
解得:k=,
故答案为:.
【点评】本题考查一元二次方程的定义及其根的判别式,此为基础且重要知识点,必须熟练掌握.
16.(4分)如图,在矩形ABCD中,点E为矩形内一点,且AB=1,AD=,∠BAE=75°,∠BCE=60°,则四边形ABCE的面积是 .
【分析】连接AC,根据勾股定理顶点AC==2,求得AB=AC,得到∠ACB=30°,求得∠CAE=15°,过E作EF⊥AC于H,交BC于F,根据等边三角形的判定定理得到△CEF是等边三角形,求得∠BAF=45°,得到BF=AB=1,根据三角形的面积公式即可得到结论.
【解答】解:连接AC,在矩形ABCD中,∠B=90°,AB=1,AD=,
∴AC==2,
∴AB=AC,
∴∠ACB=30°,
∴∠BAC=60°,
∵∠BAE=75°,
∴∠CAE=15°,
过E作EF⊥AC于H,交BC于F,
∵∠BCE=60°,
∴∠ECA=30°,
∴∠CEF=60°,
∴△CEF是等边三角形,
∴EH=FH,
∴∠EAH=∠FAH=15°,
∴∠BAF=45°,
∴△ABF是等腰直角三角形,
∴BF=AB=1,
∵BC=,
∴CF=EF=﹣1,
∴EH==,
∴四边形ABCE的面积=S△ABC+S△AEC=×=,
故答案为:,
【点评】本题考查了矩形的性质,等边三角形 的判定和性质,等腰直角三角形的判定和性质,勾股定理,三角形的面积的计算,正确地作出辅助线是解题的关键.
三、解答题(本大题共9题,共98分,解答应写出必要的文字说明、证明过程或演算步骤)
17.(10分)(1)计算:;
(2)已知,A=a﹣1,B=﹣a+3.若A>B,求a的取值范围.
【分析】(1)根据乘方的意义,零指数幂的意义计算后,合并即可;
(2)根据题意得出关于a的不等式,解不等式即可.
【解答】解:(1)原式=4+1﹣1
=4;
(2)由题意得:a﹣1>﹣a+3,
解得a>2.
【点评】本题考查了实数的运算,解一元一次不等式,熟练掌握运算法则是解题的关键.
18.(10分)为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:
某校学生一周体育锻炼调查问卷
以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小于4)
问题:你平均每周体育锻炼的时间大约是 C
A.0~4小时 B.4~6小时
C.6~8小时 D.8~小时及以上
问题2:你体育镀炼的动力是 G
E.家长要求F.学校要求
G.自己主动H.其他
(1)参与本次调查的学生共有 200 人,选择“自己主动”体育锻炼的学生有 122 人;
(2)已知该校有2600名学生,若每周体育锻炼8小时以上(含8小时)可评为“运动之星”,请估计全校可评为“运动之星”的人数;
(3)请写出一条你对同学体育锻炼的建议.
【分析】(1)用四组的人数相加可得样本容量,用样本容量乘G所占百分比可得选择“自己主动”体育锻炼的学生人数;
(2)用2600乘D组所占比例可得答案;
(3)根据统计图数据解答,答案不唯一,合理即可.
【解答】解:(1)参与本次调查的学生共有:36+72+58+34=200(人),
选择“自己主动”体育锻炼的学生有:200×61%=122(人),
故答案为:200,122;
(2)2600×=442(名),
答:估计全校可评为“运动之星”的人数大约为442名;
(3)由统计图可知,很多学生都没有达到每天锻炼1小时,所以建议同学们加强体育锻炼,增强身体素质(答案不唯一).
【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
19.(10分)为推动乡村振兴,政府大力扶持小型企业.根据市场需求,某小型企业为加快生产速度,需要更新生产设备,更新设备后生产效率比更新前提高了25%,设更新设备前每天生产x件产品.解答下列问题:
(1)更新设备后每天生产 1.25x 件产品(用含x的式子表示);
(2)更新设备前生产5000件产品比更新设备后生产6000件产品多用2天,求更新设备后每天生产多少件产品.
【分析】(1)根据“更新设备后生产效率比更新前提高了25%“列代数式即可;
(2)根据题意列分式方程,解方程即可.
【解答】解:(1)更新设备前每天生产 x 件产品,更新设备后生产效率比更新前提高了25%,
更新设备后每天生产产品数量为:(1+25%) x=1.25x(件),
故答案为:1.25x;
(2)由题意知:﹣2=,
去分母,得6250﹣2.5x=6000,
解得:x=100,
经检验,x=100是所列分式方程的解,
1.25×100=125(件).
答:更新设备后每天生产125件产品.
【点评】因此更新设备后每天生产125件产品.本题考查分式方程的实际应用,解题的关键是根据所给数量关系正确列出方程.
20.(10分)如图,在Rt△ABC中,∠C=90°,延长CB至D,使得BD=CB,过点A,D分别作AE∥BD,DE∥BA,AE与DE相交于点E.下面是两位同学的对话:
小星:由题目的已知条件,若连接BE,则可
证明BE⊥CD.
小红:由题目的已知条件,若连接CE,则可证明CE=DE.
(1)请你选择一位同学的说法,并进行证明;
(2)连接AD,若,求AC的长.
【分析】(1)小星:连接BE,根据平行四边的判定定理得到四边形ABDE是平行四边形,根据平行四边形的性质得到AE=BD,推出四边形AEBC是平行四边形,根据矩形性质得到BE⊥CD;小红:连接BE,CE,根据平行四边形的判定和性质以及矩形 的判定和性质定理即可得到论;
(2)连接AD,设CB=2k,AC=3k,根据勾股定理即可得到结论.
【解答】(1)证明:小星:连接BE,
∵AE∥BD,DE∥BA,
∴四边形ABDE是平行四边形,
∴AE=BD,
∵BD=BC,
∴AE=BC,
∵AE∥BC,
∴四边形AEBC是平行四边形,
∵∠C=90°,
∴四边形AEBC是矩形,
∴∠EBC=90°,
∴BE⊥CD;
小红:连接BE,CE,
∵AE∥BD,DE∥BA,
∴四边形ABDE是平行四边形,
∴AE=BD,AB=DE,
∵BD=BC,
∴AE=BC,
∵AE∥BC,
∴四边形AEBC是平行四边形,
∵∠C=90°,
∴四边形AEBC是矩形,
∴AB=CE,
∴DE=CE;
(2)连接AD,
∵,
∴设CB=2k,AC=3k,
∴CD=4k,
∵AC2+DC2=AD2,
∴(3k)2+(4k)2=(5)2,
∴k=,
∴AC=3.
【点评】本题考查了平行四边形 的判定和性质,勾股定理,矩形的判定,熟练掌握平行四边形的性质是解题的关键.
21.(10分)如图,在平面直角坐标系中,四边形OABC是矩形,反比例函数的图象分别与AB,BC交于点D(4,1)和点E,且点D为AB的中点.
(1)求反比例函数的表达式和点E的坐标;
(2)若一次函数y=x+m与反比例函数的图象相交于点M,当点M在反比例函数图象上D,E之间的部分时(点M可与点D,E重合),直接写出m的取值范围.
【分析】(1)利用待定系数法即可求得反比例函数的解析式,由题意可知点E的纵坐标为2,代入反比例函数的解析式即可求得点E的横坐标;
(2)求得直线经过点D和点E的坐标,即可求得m的取值.
【解答】解:(1)∵四边形OABC是矩形,点D(4,1),且点D为AB的中点,
∴B(4,2),
∴点E的纵坐标为2,
∵反比例函数的图象分别与AB,BC交于点D(4,1)和点E,
∴k=4×1=4,
∴反比例函数解析式为y=,
把y=2代入得,2=,
解得x=2,
∴E(2,2);
(2)把D(4,1)代入y=x+m得,1=4+m,解得m=﹣3,
把E(2,2)代入y=x+m得,2=2+m,解得m=0,
∴m的取值范围是﹣3≤m≤0.
【点评】本题考查了待定系数法求反比例函数的解析式,一次函数图象上点的坐标特征,矩形的性质,求得交点的坐标是解题的关键.
22.(12分)贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A为起点,沿途修建AB、CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC为50m.索道AB与AF的夹角为15°,CD与水平线夹角为45°,A、B两处的水平距离AE为576m,DF⊥AF,垂足为点F.(图中所有点都在同一平面内,点A、E、F在同一水平线上)
(1)求索道AB的长(结果精确到1m);
(2)求水平距离AF的长(结果精确到1m).
(参考数据:sin15°≈0.25,cos15°≈0.96,tan15°≈0.26,)
【分析】(1)通过解Rt△ABE可求得AB的长;
(2)延长BC交DF于G,证明四边形BEFG是矩形,可得EF=BG,∠CGD=∠BGF=90°,再解Rt△CDG可求解CG的长,进而可求解.
【解答】解:(1)在Rt△ABE中,∠AEB=90°,∠A=15°,AE=576m,
∴AB=(m),
即AB的长约为600m;
(2)延长BC交DF于G,
∵BC∥AE,
∴∠CBE=90°,
∵DF⊥AF,
∴∠AFD=90°,
∴四边形BEFG为矩形,
∴EF=BG,∠CGD=∠BGF=90°,
∵CD=AB=600m,∠DCG=45°,
∴CG=CD•cos∠DCG=600×cos45°=600×=,
∴AF=AE+EF=AE+BG=AE+BC+CG=576+50+≈1049(m),
即AF的长为1049m.
【点评】本题主要考查解直角三角形的应用,掌握三角函数的概念是解题的关键.
23.(12分)如图,已知⊙O是等边三角形ABC的外接圆,连接CO并延长交AB于点D,交⊙O于点E,连接EA,EB.
(1)写出图中一个度数为30°的角: ∠1 ,图中与△ACD全等的三角形是 △BCD ;
(2)求证:△AED∽△CEB;
(3)连接OA,OB,判断四边形OAEB的形状,并说明理由.
【分析】(1)⊙O是等边三角形ABC的外接圆,可知点O为外心,故CD为AB的中线、垂线、∠ACB平分线(三线合一),并利用HL定理证明△ACD≌△BCD;
(2)利用两三角形两个对应角相等,可证明两三角形相似;
(3)由四边形OAEB四条边相等,可知它为菱形.
【解答】(1)解:∵已知⊙O是等边三角形ABC的外接圆,
∴点O是等边三角形ABC的外心,
∴CE⊥AB,∠1=∠2=30°.
∴∠ADC=∠BDC=90°,
又∵AC=BC,CD=CD,
∴Rt△ACD≌Rt△BCD(HL定理).
故答案为:∠1(答案不唯一),△BCD.
(2)证明:∵∠ADE=∠CBE=90°,∠3=∠CAE﹣∠CAB=90°﹣60°=30°=∠2,
∴△AED∽△CEB.
(3)解:
∵∠CAE=90,∠1=30°,
∴AE=CE.
同理可证,BE=CE.
∴OA=OB=AE=BE,
∴四边形OAEB为菱形.
【点评】本题考查等边三角形的性质、相似三角形的判定与性质、垂径定理与菱形的判定,知识点比较多,但难度不大,一定要牢牢掌握,并能运用自如.
24.(12分)如图①,是一座抛物线型拱桥,小星学习二次函数后,受到该图启示设计了一建筑物造型,它的截面图是抛物线的一部分(如图②所示),抛物线的顶点在C处,对称轴OC与水平线OA垂直,OC=9,点A在抛物线上,且点A到对称轴的距离OA=3,点B在抛物线上,点B到对称轴的距离是1.
(1)求抛物线的表达式;
(2)如图②,为更加稳固,小星想在OC上找一点P,加装拉杆PA,PB,同时使拉杆的长度之和最短,请你帮小星找到点P的位置并求出坐标;
(3)为了造型更加美观,小星重新设计抛物线,其表达式为y=﹣x2+2bx+b﹣1(b>0),当4≤x≤6时,函数y的值总大于等于9.求b的取值范围.
【分析】(1)根据题意,设抛物线的解析式为y=ax2+9,待定系数法求解即可;
(2)作A点关于y轴的对称点A′(﹣3,0),连接A′B交OC于点P,则P点即为所求;
(3)分三种情况进行分类讨论,结合二次函数的图象和性质,建立不等式求得b的取值范围即可.
【解答】解:(1)设抛物线的解析式为y=ax2+9,
把点A(3,0)代入,得:
9a+9=0,
解得:a=﹣1,
∴抛物线的解析式为:y=﹣x2+9;
(2)作A点关于y轴的对称点A′(﹣3,0),连接A′B交OC于点P,则P点即为所求;
把x=1代入y=﹣x2+9,得:
y=8,
∴B(1,8)
设直线A′B的解析式为y=kx+m,
∴,
解得:,
∴y=2x+6,
令x=0,得y=6,
∴P点的坐标为(0,6);
(3)y=﹣x2+2bx+b﹣1=﹣(x﹣b)2+b2+b﹣1,
∴抛物线的对称轴为直线x=b,顶点坐标为(b,b2+b﹣1),
当0<b≤4时,得:
﹣62+12b+b﹣1≥9,
解得:,
∴≤b≤4,
当4<b<6时,
由b﹣4>6﹣b,得:
b>5,
∴﹣62+12b+b﹣1≥9,
∴5<b<6;
由b﹣4≤6﹣b,得:
b≤5,
∴﹣42+8b+b﹣1≥9,
解得:,
∴4<b≤5;
∴当4<b<6时,都成立;
当b≥6时,得:
∴﹣42+8b+b﹣1≥9,
解得:,
∴b≥6都成立;
综上所述,b的取值范围为.
【点评】本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.
25.(12分)如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC中,CA=CB,∠C=90°,过点B作射线BD⊥AB,垂足为B,点P在CB上.
(1)【动手操作】
如图②,若点P在线段CB上,画出射线PA,并将射线PA绕点P逆时针旋转90°与BD交于点E,根据题意在图中画出图形,图中∠PBE的度数为 135 度;
(2)【问题探究】
根据(1)所画图形,探究线段PA与PE的数量关系,并说明理由;
(3)【拓展延伸】
如图③,若点P在射线CB上移动,将射线PA绕点P逆时针旋转90°与BD交于点E,探究线段BA,BP,BE之间的数量关系,并说明理由.
【分析】(1)根据题意画出图形,由CA=CB,∠C=90°,得∠ABC=45°,而BD⊥AB,即得∠PBD=∠ABC+∠ABD=135°;
(2)过P作PM∥AB交AC于M,证明△PCM是等腰直角三角形,得CP=CM,∠PMC=45°,即可证△APM≌△PEB(ASA),故PA=PE;
(3)过P作PN⊥BC交BE于N,证明△BPN是等腰直角三角形,可得∠ABP=135°,BP=NP,BN=BP,∠PNB=45°,即可证△EPN≌△APB(ASA),EN=BA,根据BE=EN+BN,即得BE=BA+BP.
【解答】解:(1)画出图形如下:
∵CA=CB,∠C=90°,
∴∠ABC=45°,
∵BD⊥AB,
∴∠ABD=90°,
∴∠PBD=∠ABC+∠ABD=45°+90°=135°;
故答案为:135;
(2)PA=PE,理由如下:
过P作PM∥AB交AC于M,如图:
∴∠MPC=∠ABC=45°,
∴△PCM是等腰直角三角形,
∴CP=CM,∠PMC=45°,
∴CA﹣CM=CB﹣CP,即AM=BP,∠AMP=135°=∠PBE,
∵∠APE=90°,
∴∠EPB=90°﹣∠APC=∠PAC,
∴△APM≌△PEB(ASA),
∴PA=PE;
(3)BE=BA+BP,理由如下:
过P作PN⊥BC交BE于N,如图:
∵∠ABD=90°,∠ABC=45°,
∴∠PBN=180°﹣∠ABC﹣∠ABD=45°,
∴△BPN是等腰直角三角形,∠ABP=135°,
∴BP=NP,BN=BP,∠PNB=45°,
∴∠PNE=135°=∠ABP,
∵∠APE=90°,
∴∠EPN=90°﹣∠APN=∠APB,
∴△EPN≌△APB(ASA),
∴EN=BA,
∵BE=EN+BN,
∴BE=BA+BP.
【点评】本题考查几何变换综合应用,涉及等腰直角三角形,旋转变换,全等三角形的判定与性质等知识,解题的关键是作辅助线,构造全等三角形解决问题.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2023/7/8 9:29:21;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557
2023年贵州省中考数学试卷(含解析): 这是一份2023年贵州省中考数学试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年贵州省中考数学试卷(含解析): 这是一份2023年贵州省中考数学试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2020年贵州省毕节市中考数学试卷: 这是一份2020年贵州省毕节市中考数学试卷,共12页。